

REF			Analyzer(s) on which cobas c pack(s) can be used
03183807 190	Uric Acid ver.2 (400 tests)	System-ID 07 6615 1	Roche/Hitachi cobas c 311, cobas c 501/502
10759350 190	Calibrator f.a.s. (12 x 3 mL)	Code 401	
10759350 360	Calibrator f.a.s. (12 x 3 mL, for USA)	Code 401	
12149435 122	Precinorm U plus (10 x 3 mL)	Code 300	
12149435 160	Precinorm U plus (10 x 3 mL, for USA)	Code 300	
12149443 122	Precipath U plus (10 x 3 mL)	Code 301	
12149443 160	Precipath U plus (10 x 3 mL, for USA)	Code 301	
10171743 122	Precinorm U (20 x 5 mL)	Code 300	
10171735 122	Precinorm U (4 x 5 mL)	Code 300	
10171778 122	Precipath U (20 x 5 mL)	Code 301	
10171760 122	Precipath U (4 x 5 mL)	Code 301	
05117003 190	PreciControl ClinChem Multi 1 (20 x 5 mL)	Code 391	
05947626 190	PreciControl ClinChem Multi 1 (4 x 5 mL)	Code 391	
05947626 160	PreciControl ClinChem Multi 1 (4 x 5 mL, for USA)	Code 391	
05117216 190	PreciControl ClinChem Multi 2 (20 x 5 mL)	Code 392	
05947774 190	PreciControl ClinChem Multi 2 (4 x 5 mL)	Code 392	
05947774 160	PreciControl ClinChem Multi 2 (4 x 5 mL, for USA)	Code 392	
04489357 190	Diluent NaCl 9 % (50 mL)	System-ID 07 6869 3	

English

System information

For cobas c 311 analyzer:

UA2: ACN 700 (serum/plasma)

UA2-U: ACN 702 (urine)

For cobas c 501 analyzer: UA2: ACN 700 (serum/plasma/urine)

For cobas c 502 analyzer:

UA2: ACN 8700 (serum/plasma)

UA2-U: ACN 8702 (urine)

Intended use

In vitro test for the quantitative determination of uric acid in human serum, plasma and urine on Roche/Hitachi cobas c systems.

Summary^{1,2,3,4,5,6,7,8,9,10,11,12,13,14}

Uric acid is the final product of purine metabolism in the human organism. Uric acid measurements are used in the diagnosis and treatment of numerous renal and metabolic disorders, including renal failure, gout, leukemia, psoriasis, starvation or other wasting conditions, and of patients receiving cytotoxic drugs.

The oxidation of uric acid provides the basis for two approaches to the quantitative determination of this purine metabolite. One approach is the reduction of phosphotungstic acid in an alkaline solution to tungsten blue, which is measured photometrically. The method is, however, subject to interferences from drugs and reducing substances other than uric acid.

A second approach, described by Praetorius and Poulsen, utilizes the enzyme uricase to oxidize uric acid; this method eliminates the interferences intrinsic to chemical oxidation. Uricase can be employed in methods that involve the UV measurement of the consumption of uric acid or in combination with other enzymes to provide a colorimetric assay.

Another method is the colorimetric method developed by Town et al. The sample is initially incubated with a reagent mixture containing ascorbate oxidase and a clearing system. In this test system it is important that any ascorbic acid present in the sample is eliminated in the preliminary reaction; this precludes any ascorbic acid interference with the subsequent POD indicator reaction. Upon addition of the starter reagent, oxidation of uric acid by uricase begins.

The Roche assay described here is a slight modification of the colorimetric method described above. In this reaction, the peroxide reacts in the presence of peroxidase (POD),

N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline (TOOS), and

4-aminophenazone to form a guinone-diimine dye. The intensity of the red color formed is proportional to the uric acid concentration and is determined photometrically.

Test principle

Enzymatic colorimetric test.

Uric acid + 2 $H_2O + O_2$

2 H₂O₂ + H⁺ + TOOS^a

+ 4-aminophenazone

Uricase cleaves uric acid to form allantoin and hydrogen peroxide.

allantoin + CO_2 + H_2O_2

In the presence of peroxidase, 4-aminophenazone is oxidized by hydrogen peroxide to a quinone-diimine dye.

>

Peroxidase

quinone-diimine dye + 4 H₂O

The color intensity of the quinone-diimine formed is directly proportional to the uric acid concentration and is determined by measuring the increase in absorbance.

a) N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline

Reagents - working solutions

- Phosphate buffer: 0.05 mol/L, pH 7.8; TOOS: 7 mmol/L; fatty **R1** alcohol polyglycol ether: 4.8 %; ascorbate oxidase (EC 1.10.3.3; zucchini) ≥ 83.5 µkat/L (25 °C); stabilizers
- R3 Phosphate buffer: 0.1 mol/L, pH 7.8; potassium hexacyanoferrate (II): 0.3 mmol/L; 4-aminophenazone \geq 3 mmol/L; uricase (EC 1.7.3.3; Arthrobacter protophormiae) ≥ 83.4 µkat/L (25 °C); peroxidase (POD) (EC 1.11.1.7; horseradish) ≥ 50 µkat/L (25 °C); stabilizers

R1 is in position B and R3 is in position C.

Precautions and warnings

For in vitro diagnostic use.

Exercise the normal precautions required for handling all laboratory reagents

Disposal of all waste material should be in accordance with local guidelines. Safety data sheet available for professional user on request.

For USA: Caution: Federal law restricts this device to sale by or on the order of a physician.

This kit contains components classified as follows in accordance with the Regulation (EC) No. 1272/2008:

Danger

H318

Prevention:

P280 Wear eye protection/ face protection.

Causes serious eye damage.

Response:

 P305 + P351
 IF IN EYES: Rinse cautiously with water for several

 + P338
 minutes. Remove contact lenses, if present and easy to do.

 + P310
 Continue rinsing. Immediately call a POISON CENTER/ doctor.

Product safety labeling follows EU GHS guidance.

Contact phone: all countries: +49-621-7590, USA: 1-800-428-2336

Reagent handling

Ready for use

Storage and stability

UA2

•••=	
Shelf life at 2-8 °C:	See expiration date on cobas c pack label.
	•
On-board in use and refrigerated on the	8 weeks

On-board in use and refrigerated on the analyzer:

NaCl Diluent 9 % Shelf life at 2-8 °C:

On-board in use and

	See expiration date on cobas c pack label.
refrigerated on the	12 weeks

analyzer:

Specimen collection and preparation

For specimen collection and preparation only use suitable tubes or collection containers.

Only the specimens listed below were tested and found acceptable. Serum.

Plasma: Li-heparin and $K_{2}\mbox{-}EDTA$ plasma.

EDTA plasma values are approximately 7 % lower than serum values.

The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e. not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Urine: Assay urinary uric acid as soon as possible. Do not refrigerate.

To prevent ureate precipitation in urine samples, add sodium hydroxide to keep urine alkaline (pH > 8.0). To achieve stated uric acid stability, add NaOH prior to sample collection. Urine samples are diluted 1 + 10 with distilled/deionized water or 0.9 % NaCI. This dilution is taken into account in the calculation of the results.

Centrifuge samples containing precipitates before performing the assay.

Stability in serum/plasma:15	7 days at 4-8 °C
	3 days at 20-25 °C
	6 months at -20 °C
Stability in urine ¹⁵ (upon NaOH addition):	4 days at 20-25 °C

Materials provided

See "Reagents - working solutions" section for reagents.

Materials required (but not provided)

See "Order information" section General laboratory equipment

Assay

For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator's manual for analyzer-specific assay instructions.

The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma

cobas c 311 test definition			
Assay type	2-Point End		
Reaction time / Assay points	10 / 23-27		
Wavelength (sub/main)	700/546 nm		
Reaction direction	Increase		
Units	mg/dL (µmol/L, mg/L)		
Reagent pipetting		Diluent (H ₂	D)
R1	72 μL	25	μL
R3	14 µL	20	μL
Sample volumes	Sample	Sample	dilution
		Sample	Diluent (NaCl)
Normal	3 µL	-	-
Decreased	12 µL	15 µL	135 µL
Increased	3 µL	-	-
cobas c 501 test definition			
Assay type	2-Point End		
Reaction time / Assay points			
Wavelength (sub/main)	700/546 nm		
Reaction direction	Increase		
Units	mg/dL (µmol/L, mg/L)		
Reagent pipetting	mg/αε (μποι/ε, mg/ε)	Diluent	(H-O)
R1	72 μL	25	
R3	72 μΕ 14 μL	20	-
Sample volumes	Sample	Sample	-
Sample volumes	Sample	Sample	Diluent (NaCl)
Normal	3 µL	_	(11/201)
Decreased	ο μ <u>-</u> 12 μL	15 µL	135 µL
Increased	3 µL	-	
	- F-		
cobas c 502 test definition	2-Point End		
Assay type	10 / 34-42		
Reaction time / Assay points			
Wavelength (sub/main)	700/546 nm		
Reaction direction	Increase		
Units	mg/dL (µmol/L, mg/L)		
Reagent pipetting	- 0 ·	Diluent	
R1	72 μL	25	
R3	14 µL	20	μL
-		017 07 1/1	

0003183807190c501V11.0 UA2 Uric Acid ver.2

cobas®

Sample volumes	Sample	Sample o	
		Sample	Diluent (NaCl)
Normal	3 µL	_	-
Decreased	12 µL	15 µL	135 µL
Increased	6 μL	-	_
Application for urine	·		
cobas c 311 test definition			
Assay type	2-Point End		
	10 / 23-27		
Wavelength (sub/main)	700/546 nm		
Reaction direction	Increase		
Units	mg/dL (µmol/L, mg/L)		
Reagent pipetting		Diluent	(H ₂ O)
R1	72 μL	25 µ	
R3	14 µL	20 μ	μL
Sample volumes	Sample	Sample of	dilution
		Sample	Diluent (NaCl)
Normal	3 µL	15 µL	150 μL
Decreased	3 µL	6 µL	160 µL
Increased	3 µL	15 µL	150 µL
cobas c 501 test definition			
Assay type	2-Point End		
Reaction time / Assay points	10 / 34-42		
Wavelength (sub/main)	700/546 nm		
Reaction direction	Increase		
Units	mg/dL (µmol/L, mg/L)		
Reagent pipetting		Diluent	(H ₂ O)
R1	72 µL	25 µ	μL
R3	14 μL	20 µ	μL
Sample volumes	Sample	Sample of	dilution
		Sample	Diluent (NaCl)
Normal	3 µL	15 µL	150 µL
Decreased	3 µL	6 µL	160 µL
Increased	3 µL	15 µL	150 μL
cobas c 502 test definition			
Assay type	2-Point End		
Reaction time / Assay points	10 / 34-42		
Wavelength (sub/main)	700/546 nm		
Reaction direction	Increase		
Units	mg/dL (µmol/L, mg/L)		
Reagent pipetting		Diluent	(H ₂ O)
R1	72 µL	25 µ	ıL
R3	14 µL	20 µ	ıL
Sample volumes	Sample	Sample of	
		Sample	Diluent (NaCl)

Normal	3 µL	15 µL	150 μL
Decreased	3 µL	6 µL	160 μL
Increased	6 µL	15 µL	150 μL
Calibration			
Calibrators	S1: H ₂ O S2: C.f.a.s.		
Calibration mode	Linear		
Calibration frequency	2-point calibr		
	- after reager		
	 as required procedures 	following qua	ality control
Calibration interval may be extended calibration by the laboratory.			
Traceability: This method has been	n standardized a	gainst ID/MS	10
Quality control Serum/plasma			
For quality control, use control mat section. In addition, other suitable	terials as listed ir control material o	n the "Order in can be used.	nformation"
Quantitative urine controls are reco The control intervals and limits sho individual requirements. Values ob limits. Each laboratory should esta	ould be adapted t tained should fal	o each labora I within the d	atory's efined
values fall outside the defined limit Follow the applicable government quality control.	S.		
Calculation Roche/Hitachi cobas c systems au concentration of each sample.	utomatically calc	ulate the ana	lyte
Conversion factors: mg/	dL x 59.5 = µmol	/L	
	dL x 10 = mg/L		
Limitations - interference	0		
Criterion: Recovery within \pm 10 % c concentration of 7 mg/dL (417 μmc	of initial value at bl/L).	an uric acid	
Serum/plasma Icterus: ¹⁷ No significant interference	o un to an Lindo	v of 40 for co	niugated
and unconjugated bilirubin (approx bilirubin concentration: 684 µmol/L	imate conjugate		
Hemolysis: ¹⁷ No significant interfer (approximate hemoglobin concent	ration: 621 µmol/	L or 1000 mg	ı/dL).
Lipemia (Intralipid): ¹⁷ No significan There is poor correlation between triglycerides concentration.	the L index (corr	esponds to tu	
Ascorbic acid < 0.17 mmol/L (< 3 m	•		
Drugs: No interference was found a common drug panels. ^{18,19} Exception low uric acid results.	at therapeutic co ons: Calcium dob	esilate cause	using es artificially
Uricase reacts specifically with uric the uric acid reaction.			
Dicynone (Etamsylate) at therapeur results. ²⁰		-	
Acetaminophen intoxications are fr N-Acetylcysteine at the therapeutic and the Acetaminophen metabolite (NAPQI) independently may cause	concentration w N-acetyl-p-benz	/hen used as zoquinone im	an antidote
Venipuncture should be performed Metamizole. Venipuncture immedia Metamizole may lead to falsely low	ately after or duri		istration of
In very rare cases, gammopathy, in	n particular type	IoM (Walden	ström's

In very rare cases, gammopathy, in particular type IgM (Waldenström's macroglobulinemia), may cause unreliable results.²¹

Urine

Drugs: No interference was found at therapeutic concentrations using common drug panels.¹⁹ Exceptions: Calcium dobesilate, Levodopa and methyldopa can all cause artificially low uric acid results.

High homogentisic acid concentrations in urine samples lead to false results.

Dicynone (Etamsylate) at therapeutic concentrations may lead to false-low results.

Acetaminophen, Acetylcysteine and Metamizole are metabolized quickly. Therefore, interference from these substances is unlikely but cannot be excluded.

For diagnostic purposes, the results should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.

ACTION REQUIRED

Special Wash Programming: The use of special wash steps is mandatory when certain test combinations are run together on Roche/Hitachi **cobas c** systems. The latest version of the carry-over evasion list can be found with the NaOHD-SMS-SmpCln1+2-SCCS Method Sheets. For further instructions refer to the operator's manual. **cobas c** 502 analyzer: All special wash programming necessary for avoiding carry-over is available via the **cobas** link, manual input is not required.

Where required, special wash/carry-over evasion programming must be implemented prior to reporting results with this test.

Limits and ranges

Measuring range

Serum/plasma

0.2-25.0 mg/dL (11.9-1487 µmol/L)

Determine samples having higher concentrations via the rerun function. Dilution of samples via the rerun function is a 1:2.5 dilution. Results from samples diluted using the rerun function are automatically multiplied by a factor of 2.5.

Urine

2.2-275 mg/dL (131-16362 µmol/L)

Determine samples having higher concentrations via the rerun function. Dilution of samples via the rerun function is a 1:2.5 dilution. Results from samples diluted using the rerun function are automatically multiplied by a factor of 2.5.

Lower limits of measurement

Lower detection limit of the test

Serum/plasma

0.2 mg/dL (11.9 µmol/L)

The lower detection limit represents the lowest measurable analyte level that can be distinguished from zero. It is calculated as the value lying 3 standard deviations above that of the lowest standard (standard 1 + 3 SD, repeatability, n = 21).

Urine

2.2 mg/dL (131 µmol/L)

The lower detection limit represents the lowest measurable analyte level that can be distinguished from zero. It is calculated as the value lying 3 standard deviations above that of the lowest standard (standard 1 + 3 SD, repeatability, n = 21).

Expected values

Serum/plasma²²

Males:	3.4-7.0 mg/dL	(202.3-416.5 µmol/L)
Females:	2.4-5.7 mg/dL	(142.8-339.2 µmol/L)

Urine (reference range according to Krieg and Colombo)

1st morning urine ²³	37-92 mg/dL	(2200-5475 µmol/L)	
24-hour urine ²⁴	200-1000 mg/day	(1200-5900 µmol/day)	
corresponding to	13-67 mg/dL	(773-3986 µmol/L)	
(calculated from a urine volume of 1.5 L/24 h)			

cobas®

Urine (reference range according to Tietz) ²⁵	
Average diet	250-750 mg/24 hours
Low purine diet	

Low purine diet		
	Females	< 400 mg/24 hours
	Males	< 480 mg/24 hours
High purine diet		< 1000 mg/24 hours

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Precision

Precision was determined using human samples and controls in an internal protocol with repeatability (n = 21) and intermediate precision (3 aliquots per run, 1 run per day, 21 days). The following results were obtained: *Serum/plasma*

CV Repeatability Mean SD mg/dL (µmol/L) mg/dL (µmol/L) % Precinorm U 4.54 (270) 0.04(2)0.9 0.7 Precipath U 11.1 (660) 0.1 (6) Human serum 1 4.03 (240) 0.04 (2) 1.0 7.23 (430) Human serum 2 0.06(4)0.8 CV Intermediate precision SD Mean % mg/dL ($\mu mol/L$) mg/dL (µmol/L) 4.47 (266) Precinorm U 0.07 (4) 1.5 Precipath U 11.1 (660) 0.2 (12) 1.6 Human serum 3 3.96 (236) 0.05(3)1.3 7.17 (427) 0.10 (6) Human serum 4 1.3 Urine CV Repeatability Mean SD $mg/dL (\mu mol/L)$ mg/dL (µmol/L) % Control level 1 11.7 (696) 1.2 0.1 (6) Control level 2 21.7 (1291) 0.3 (18) 1.3 Urine 1 28.8 (1714) 0.6 (36) 2.1 Urine 2 32.5 (1934) 0.5 (30) 1.5 Intermediate precision Mean SD CV mg/dL (µmol/L) mg/dL (µmol/L) % Control level 1 11.4 (678) 0.2 (12) 1.9 Control level 2 1.6 21.3 (1267) 0.3 (18) Urine 3 3.0 29.3 (1743) 0.9 (54) Urine 4 32.1 (1910) 0.8 (48) 2.3

Method comparison

Uric acid values for human serum, plasma and urine obtained on a Roche/Hitachi **cobas c** 501 analyzer (y) were compared with those determined using the corresponding reagent on a Roche/Hitachi 917 analyzer (x).

Serum/plasma

Passing/Bablok²⁶

y = 0.993x + 0.158 mg/dL y = 0.986x + 0.224 mg/dL

Linear regression

т = 0.969

r = 1.000

Linear regression

The sample concentrations were between 2.70 and 23.4 mg/dL (161 and 1392 $\mu mol/L).$

Urine

Sample size (n) = 86

Passing/Bablok²⁶

0	0
y = 0.997x + 0.456 mg/dL	y = 0.998x + 0.522 mg/dL
т = 0.952	r = 0.999

The sample concentrations were between 6.35 and 269 mg/dL (378 and 16006 $\mu mol/L).$

References

- 1 Greiling H, Gressner AM, eds. Lehrbuch der Klinischen Chemie und Pathobiochemie, 3rd ed. Stuttgart/New York: Schattauer Verlag 1995.
- 2 Keller H, ed. Klinisch-chemische Labordiagnostik für die Praxis, 2nd ed. Stuttgart/New York: Georg Thieme Verlag 1991.
- 3 Rice EW, Grogan BS. 1960 survey of clinical chemistry procedures used by members of the American Association of Clinical Chemists. Clin Chem 1962;8:181-193.
- 4 Kageyama N. A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system Clin Chim Acta 1971;31:421-426.
- 5 DiGiorgio J, Henry RJ, et al. eds. Clinical Chemistry: Principles and Technics. 2nd ed. New York, NY: Harper and Row 1974:532.
- 6 Kaiser E, et al. Wiener Klin Wschr 1972;84:217.
- 7 Kim EK, Waddel LD, Sunderland MLE, et al. Observations on Diagnostic Kits for the Determination of Uric Acid. Clin Biochem 1971;4:279-286.
- 8 Elking MP, Karat HF. Drug induced modifications of laboratory test values. Am J Hosp Pharm 1968;25(9):484-519.
- 9 Young DS, Thomas DW, Friedman RB, et al. Effects of drugs on clinical laboratory tests. Clin Chem 1972;18(10):1041.
- Küffer H. Causes of misleading laboratory results: disturbances due to drugs. Therap Umschau 1971;28(10):669-680.
- 11 Haug HG. Diagnostik 1972;5:85.
- 12 Singh HP, Hebert MA, Gault MH. Effect of Some Drugs on Clinical Laboratory Values as Determined by the Technicon SMA 12-60. Clin Chem 1972;18(2):137-144.
- 13 Praetorius E, Poulsen H. Enzymatic determination of uric acid; with detailed directions. Scand J Clin Lab Invest 1953;5(3):273-280.
- 14 Town MH, Gehm S, Hammer B, et al. A sensitive colorimetric method for the enzymatic determination of uric acid. J Clin Chem Clin Biochem 1985;23:591.
- 15 WHO Publication: Use of anticoagulants in diagnostic laboratory investigations, WHO/DIL/LAB/99.1 Rev.2:Jan 2002.
- 16 Siekmann L. Determination of uric acid in human serum by isotope dilution-mass spectrometry. J Clin Chem Clin Biochem 1985;23:129-135.
- 17 Glick MR, Ryder KW, Jackson SA. Graphical Comparisons of Interferences in Clinical Chemistry Instrumentation. Clin Chem 1986;32:470-475.
- 18 Breuer J. Report on the Symposium "Drug effects in Clinical Chemistry Methods". Eur J Clin Chem Clin Biochem 1996;34:385-386.
- 19 Sonntag O, Scholer A. Drug interference in clinical chemistry: recommendation of drugs and their concentrations to be used in drug interference studies. Ann Clin Biochem 2001;38:376-385.
- 20 Dastych M, Wiewiorka O, Benovska M. Ethamsylate (Dicynone) Interference in Determination of Serum Creatinine, Uric Acid, Triglycerides, and Cholesterol in Assays Involving the Trinder Reaction; In Vivo and In Vitro. Clin Lab 2014;60:1373-1376.
- 21 Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. Clin Chem Lab Med 2007;45(9):1240-1243.

- 23 Krieg M, Gunsser KJ, Steinhagen-Thiessen E, et al. Vergleichende quantitative Analytik klinisch-chemischer Kenngrößen im 24-Stunden-Urin und Morgenurin. J Clin Chem Clin Biochem 1986 Nov;24(11):863-869.
- 24 Colombo JP, ed. Klinisch-chemische Urindiagnostik. Rotkreuz: LABOLIFE-Verlagsgemeinschaft 1994:180.
- 25 Wu AHB, ed. Tietz Clinical Guide to Laboratory Tests, 4th edition. St. Louis (MO): Saunders Elsevier 2006;1098-1100.
- 26 Bablok W, Passing H, Bender R, et al. A general regression procedure for method transformation. Application of linear regression procedures for method comparison studies in clinical chemistry, Part III. J Clin Chem Clin Biochem 1988 Nov;26(11):783-790.

A point (period/stop) is always used in this Method Sheet as the decimal separator to mark the border between the integral and the fractional parts of a decimal numeral. Separators for thousands are not used.

Symbols

Roche Diagnostics uses the following symbols and signs in addition to those listed in the ISO 15223-1 standard (for USA: see https://usdiagnostics.roche.com for definition of symbols used):

Contents of kit

Volume after reconstitution or mixing

Global Trade Item Number

FOR US CUSTOMERS ONLY: LIMITED WARRANTY

Roche Diagnostics warrants that this product will meet the specifications stated in the labeling when used in accordance with such labeling and will be free from defects in material and workmanship until the expiration date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.

COBAS, COBAS C, PRECICONTROL, PRECINORM and PRECIPATH are trademarks of Roche. All other product names and trademarks are the property of their respective owners. Additions, deletions or changes are indicated by a change bar in the margin. © 2017, Roche Diagnostics

CE

Roche Diagnostics GmbH, Sandhofer Strasse 116, D-68305 Mannheim www.roche.com

Distribution in USA by: Roche Diagnostics, Indianapolis, IN

US Customer Technical Support 1-800-428-2336

2017-07, V 11.0 English

cobas®