cobas®

REF		Σ	[SYSTEM]
07007014100	07027014500	100	cobas e 402
07027214190	07027214500	100	cobas e 801

English

System information

Short name	ACN (application code number)
DIGO	10056

Intended use

Immunoassay for the in vitro quantitative determination of digoxin in human serum and plasma. Measurements are used in the diagnosis and treatment of digoxin overdose and in monitoring levels of digoxin to ensure proper therapy.

The electrochemiluminescence immunoassay "ECLIA" is intended for use on **cobas e** immunoassay analyzers.

Summary

Digoxin is a widely prescribed steroidal cardio-active glycoside. It acts by binding and inhibiting the Na⁺/K⁺-ATPase which in the end increases the intracellular Ca²⁺ concentration.^{1,2} This results in a positive inotrope effect which makes digoxin a beneficial drug for heart failure. It improves the strength of myocardial contraction and results in the beneficial effects of increased cardiac output, increased Left Ventricular Ejection Fraction, and decreased Pulmonary Capillary Wedge pressure.^{3,4} Digoxin therapy also results in stabilized and slowed ventricular pulse rate.⁵

Although the availability of crystalline digoxin has permitted the standardization of drug dosage, therapeutic administration inadvertently, yet frequently, results in toxicity. Importantly, symptoms of digoxin toxicity often mimic the cardiac arrhythmias for which the drug was originally prescribed. Digoxin concentrations of 0.9-2.0 ng/mL in serum or plasma were considered to be therapeutic.^{6.7} However, later studies observed an increased risk for mortality for digoxin concentrations of 1.2 ng/mL and higher.^{8.9} The 2013 AHA/ACC guidelines mentioned that doses of digoxin that achieve a plasma concentration of drug in the range of 0.5 to 0.9 ng/mL are suggested, given the limited evidence currently available and that overt digoxin toxicity is commonly associated with serum digoxin levels > 2 ng/mL.¹⁰

Toxicity of digoxin may reflect several factors:

- 1. The drug has a low therapeutic ratio (i.e. a very small difference exists between therapeutic and toxic tissue levels);
- 2. Individuals vary in their response to digoxin;
- 3. Absorption of various tablet forms of digoxin may vary over a two-fold range;^{11,12}
- Susceptibility to digitalis toxicity apparently increases with age mainly associated with renal impairment.^{4,13}

In combination with other clinical data, monitoring serum or plasma levels may provide the physician with useful information to aid in adjusting patient dosage, and achieving optimal therapeutic effect, while avoiding both subtherapeutic and harmful toxic drug levels.¹⁴

The Elecsys Digoxin assay employs a competitive test principle using a monoclonal antibody specifically directed against digoxin. Digoxin in the sample competes with the added digoxin derivative labeled with biotin for the binding sites on the ruthenylated antibody-complex^a).

a) Tris(2,2'-bipyridyl)ruthenium(II)-complex (Ru(bpy) $^{2+}_3$)

Test principle

Competition principle. Total duration of assay: 18 minutes.

- 1st incubation: By incubating the sample (6 µL) with a digoxin-specific ruthenium-labeled antibody, an immunocomplex is formed, the amount of which is dependent upon the analyte concentration in the sample.
- 2nd incubation: After addition of streptavidin-coated microparticles and a digoxin derivative labeled with biotin, the still-vacant sites of the ruthenium labeled antibodies become occupied, with formation of an antibody-hapten complex. The entire complex becomes bound to the solid phase via interaction of biotin and streptavidin.

- The reaction mixture is aspirated into the measuring cell where the microparticles are magnetically captured onto the surface of the electrode. Unbound substances are then removed with ProCell II M. Application of a voltage to the electrode then induces chemiluminescent emission which is measured by a photomultiplier.
- Results are determined via a calibration curve which is instrumentspecifically generated by 2-point calibration and a master curve provided via the **cobas** link.

Reagents - working solutions

The cobas e pack is labeled as DIGO.

- M Streptavidin-coated microparticles, 1 bottle, 5.8 mL: Streptavidin-coated microparticles 0.72 mg/mL; preservative.
- R1 Anti-digoxin-Ab~Ru(bpy)²⁺₃, 1 bottle, 10.3 mL: Monoclonal anti-digoxin antibody (mouse) labeled with ruthenium complex 15 µg/L; phosphate buffer 100 mmol/L, pH 7.0; preservative.
- R2 Digoxin-derivative~biotin, 1 bottle, 10.3 mL: Biotinylated digoxigenin 1.06 ng/mL; biotin 15 μg/L; phosphate buffer 100 mmol/L, pH 7.0; preservative.

Precautions and warnings

For in vitro diagnostic use for health care professionals. Exercise the normal precautions required for handling all laboratory reagents. Infectious or microbial waste:

Warning: handle waste as potentially biohazardous material. Dispose of waste according to accepted laboratory instructions and procedures. Environmental hazards:

Apply all relevant local disposal regulations to determine the safe disposal. Safety data sheet available for professional user on request.

This kit contains components classified as follows in accordance with the Regulation (EC) No. 1272/2008:

Warning

H317	May cause an allergic skin reaction.		
Prevention:			
P261	Avoid breathing dust/fume/gas/mist/vapours/spray.		
P272	Contaminated work clothing should not be allowed out of the workplace.		
P280	Wear protective gloves.		
Response:			
P333 + P313	If skin irritation or rash occurs: Get medical advice/attention.		
P362 + P364	Take off contaminated clothing and wash it before reuse.		
Disposal:			
P501	Dispose of contents/container to an approved waste disposal plant.		
Product safety labeling follows EU GHS guidance.			
Contact phone: all countries: +49-621-7590			
Avoid foam formation in all reagents and sample types (specimens, calibrators and controls).			

Reagent handling

The reagents in the kit have been assembled into a ready-for-use unit that cannot be separated.

All information required for correct operation is available via the **cobas** link.

Storage and stability

Store at 2-8 °C.

Do not freeze.

Store the **cobas e** pack **upright** in order to ensure complete availability of the microparticles during automatic mixing prior to use.

Stability:

unopened at 2-8 °C	up to the stated expiration date
on the analyzers	16 weeks

Specimen collection and preparation

Blood samples for digoxin analyses should be collected at trough levels which is just prior to the next drug dose or at least 12 hours, and preferably 24 hours after the previous digoxin dose. Considering a blood elimination half-life of 1.5 days for digoxin, steady state blood concentrations require approximately 1 week after initiation of therapy – or longer in case of abnormal kidney function.¹⁵

Only the specimens listed below were tested and found acceptable. Serum collected using standard sampling tubes or tubes containing

separating gel.

Li-heparin, K_2 -EDTA and K_3 -EDTA plasma.

Li-heparin and $K_{2}\mbox{-}EDTA$ plasma tubes containing separating gel can be used.

Criterion: Slope 0.9-1.1 + intercept within < \pm 0.15 ng/mL + coefficient of correlation \geq 0.95.

Stable for 7 days at 15-25 °C, 14 days at 2-8 °C, 6 months at -20 °C (\pm 5 °C). Freeze only once.

The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e. not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Centrifuge samples containing precipitates before performing the assay.

Ensure the samples and calibrators are at 20-25 °C prior to measurement. Due to possible evaporation effects, samples and calibrators on the analyzers should be analyzed/measured within 2 hours.

Materials provided

See "Reagents - working solutions" section for reagents.

Materials required (but not provided)

- REF 11820907322, Digoxin CalSet, 4 x 1.5 mL
- REF 04917049190, PreciControl Cardiac II, for 4 x 2.0 mL
- REF 07299001190, Diluent Universal, 45.2 mL sample diluent
- General laboratory equipment

cobas e analyzer

- Additional materials for cobas e 402 and cobas e 801 analyzers:
- REF 06908799190, ProCell II M, 2 x 2 L system solution
- REF 04880293190, CleanCell M, 2 x 2 L measuring cell cleaning solution
- REF 07485409001, Reservoir Cup, 8 cups to supply ProCell II M and CleanCell M
- REF 06908853190, PreClean II M, 2 x 2 L wash solution
- REF 05694302001, Assay Tip/Assay Cup tray, 6 magazines x 6 magazine stacks x 105 assay tips and 105 assay cups, 3 wasteliners
- REF 07485425001, Liquid Flow Cleaning Cup, 2 adaptor cups to supply ISE Cleaning Solution/Elecsys SysClean for Liquid Flow Cleaning Detection Unit

- REF 07485433001, PreWash Liquid Flow Cleaning Cup, 1 adaptor cup to supply ISE Cleaning Solution/Elecsys SysClean for Liquid Flow Cleaning PreWash Unit
- International Internatione International International International International Inte

Assay

For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator's manual for analyzer-specific assay instructions.

Resuspension of the microparticles takes place automatically prior to use.

Place the cooled (stored at 2-8 °C) **cobas e** pack on the reagent manager. Avoid foam formation. The system automatically regulates the temperature of the reagents and the opening/closing of the **cobas e** pack.

Calibration

Traceability: This method has been standardized by weighing United States Pharmacopoeia (USP) digoxin reference material into analyte free human serum.

The predefined master curve is adapted to the analyzer using the relevant CalSet.

Calibration frequency: Calibration must be performed once per reagent lot using fresh reagent (i.e. not more than 24 hours since the **cobas e** pack was registered on the analyzer).

Calibration interval may be extended based on acceptable verification of calibration by the laboratory.

Renewed calibration is recommended as follows:

- after 8 weeks when using the same reagent lot
- after 28 days when using the same cobas e pack on the analyzer
- as required: e.g. quality control findings outside the defined limits

Quality control

For quality control, use PreciControl Cardiac II.

In addition, other suitable control material can be used.

Controls for the various concentration ranges should be run individually at least once every 24 hours when the test is in use, once per **cobas e** pack, and following each calibration.

The control intervals and limits should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the defined limits.

If necessary, repeat the measurement of the samples concerned.

Follow the applicable government regulations and local guidelines for quality control.

Calculation

The analyzer automatically calculates the analyte concentration of each sample (either in nmol/L or ng/mL).

Conversion factors:	nmol/L x 0.78 = ng/mL
	ng/mL x 1.28 = nmol/L

Limitations - interference

The effect of the following endogenous substances and pharmaceutical compounds on assay performance was tested. Interferences were tested up to the listed concentrations and no impact on results was observed.

Endogenous substances

Compound	Concentration tested
Bilirubin	\leq 1129 µmol/L or \leq 66 mg/dL
Hemoglobin	≤ 0.621 mmol/L or ≤ 1000 mg/dL
Intralipid	≤ 1500 mg/dL
Biotin	\leq 409 nmol/L or \leq 100 ng/mL
Rheumatoid factors	≤ 1630 IU/mL
lgG	≤ 7.00 g/dL
Albumin	≤ 7.00 g/dL

cobas®

cobas®

Criterion: For concentrations ≤ 0.8 ng/mL (≤ 1.02 nmol/L) the deviation is $\leq \pm 0.08$ ng/mL (± 0.10 nmol/L). For concentrations > 0.8-4.0 ng/mL (> 1.02-5.12 nmol/L) the deviation is ≤ 10 %. For concentrations > 4.0 ng/mL (> 5.12 nmol/L) the deviation is ≤ 12 %.

Samples should not be taken from patients receiving therapy with high biotin doses (i.e. > 5 mg/day) until at least 8 hours following the last biotin administration.

Pharmaceutical substances

In vitro tests were performed on 16 commonly used pharmaceuticals. No interference with the assay was found.

In addition, the following special cardiac drugs were tested. No interference with the assay was found.

Special cardiac drugs

Drug	Concentration tested mg/L
Carvedilol	37.5
Clopidogrel	75.0
Epinephrine (adrenaline)	0.50
Insulin	1.60
Lidocaine	80.0
Lisinopril	10.0
Methylprednisolone	7.50
Metoprolol	150
Nifedipine	30.0
Phenprocoumon	3.00
Propafenone	300
Reteplase	33.3
Simvastatin	30.0
Spironolactone	15.0
Tolbutamide	1500
Torasemide	15.0
Verapamil	240

Spironolactone was identified to cause falsely elevated digoxin values when exceeding the concentration mentioned in the table above.

Hydrocortisone was identified to cause falsely elevated digoxin values above (drug) levels of 10 mg/L.

Uzara, nabumetone, pentoxifylline and canrenone were identified to cause falsely elevated digoxin values at concentrations of the recommended daily dose.

Digoxin-like immunoreactive substances (DLIS) have been identified in blood from patients with renal failure, liver failure, and pregnant women in their third trimester. Studies have shown that the presence of DLIS in a sample can result in a false elevation of digoxin when assayed by commercially available immunoassays.^{16,17,18}

As stated by the manufacturers of digitalis antidotes, the therapeutic antibody fragments against digitalis (e.g. DigiFab, DigiBind) will interfere with digitalis immunoassay measurements.¹⁹ Therefore, the manufacturer of DigiFab recommends to obtain samples for determination of digoxin concentration prior to antidote administration.¹⁹ As a consequence Elecsys Digoxin concentrations may be falsely elevated if measured in the presence of the antidote until the Fab fragments are eliminated from the body.¹⁹

In rare cases, interference due to extremely high titers of antibodies to analyte-specific antibodies, streptavidin or ruthenium can occur. These effects are minimized by suitable test design.

For diagnostic purposes, the results should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.

Limits and ranges

Measuring range

0.2-5.0~ng/mL or 0.26-6.4~nmol/L (defined by the Limit of Detection and the maximum of the master curve). Values below the Limit of Detection are

reported as < 0.2 ng/mL or < 0.26 nmol/L. Values above the measuring range are reported as > 5.0 ng/mL or > 6.4 nmol/L (or up to 10.0 ng/mL or 12.8 nmol/L for 2-fold diluted samples).

Lower limits of measurement

Limit of Blank, Limit of Detection and Limit of Quantitation

Limit of Blank = 0.15 ng/mL (0.19 nmol/L)

Limit of Detection = 0.2 ng/mL (0.26 nmol/L)

Limit of Quantitation = 0.4 ng/mL (0.51 nmol/L)

The Limit of Blank, Limit of Detection and Limit of Quantitation were determined in accordance with the CLSI (Clinical and Laboratory Standards Institute) EP17-A2 requirements.

The Limit of Blank is the 95th percentile value from n \ge 60 measurements of analyte-free samples over several independent series. The Limit of Blank corresponds to the concentration below which analyte-free samples are found with a probability of 95 %.

The Limit of Detection is determined based on the Limit of Blank and the standard deviation of low concentration samples. The Limit of Detection corresponds to the lowest analyte concentration which can be detected (value above the Limit of Blank with a probability of 95 %).

The Limit of Quantitation is defined as the lowest amount of analyte in a sample that can be accurately quantitated with a total allowable relative error of \leq 20 %.

Dilution

Samples with digoxin concentrations above the measuring range can be diluted with Diluent Universal. The recommended dilution is 1:2 (either automatically by the analyzer or manually). The concentration of the diluted sample must be > 2.5 ng/mL or > 3.2 nmol/L.

After manual dilution, multiply the result by the dilution factor.

After dilution by the analyzer, the software automatically takes the dilution into account when calculating the sample concentration.

Expected values

The recommended therapeutic range for digoxin is 0.6-1.2 ng/mL (0.77-1.5 nmol/L) (ESC Guideline 2008²⁰) or even 0.5-1.0 ng/mL (0.64-1.3 nmol/L).²¹ Particularly the upper end of the therapeutic range is controversial and concentrations up to 2.0 ng/mL (2.6 nmol/L) may still be applied.^{6.7} Concentrations > 2.0 ng/mL are generally considered toxic.^{10,22}

Therefore, clinical diagnosis should be based on clinical and laboratory data. Each laboratory should establish an acceptable reporting format and identify procedures for the reporting of abnormal results.

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Precision

Precision was determined using Elecsys reagents, samples and controls in a protocol (EP05-A3) of the CLSI (Clinical and Laboratory Standards Institute): 2 runs per day in duplicate each for 21 days (n = 84). The following results were obtained:

cobas e 402 and cobas e 801 analyzers					
		Repeatal	bility	Intermed precisi	liate on
Sample	Mean ng/mL	SD ng/mL	CV %	SD ng/mL	CV %
Human serum 1	0.478	0.024	5.0	0.027	5.7
Human serum 2	0.661	0.027	4.1	0.029	4.4
Human serum 3	1.14	0.041	3.6	0.045	3.9
Human serum 4	2.41	0.049	2.0	0.054	2.2
Human serum 5	4.49	0.086	1.9	0.117	2.6
PC ^{b)} Cardiac II 1	1.08	0.029	2.7	0.032	3.0
PC Cardiac II 2	2.47	0.056	2.3	0.062	2.5

b) PC = PreciControl

cobas e 402 and cobas e 801 analyzers					
		Repeata	bility	Intermed precisi	diate on
Sample	Mean nmol/L	SD nmol/L	CV %	SD nmol/L	CV %
Human serum 1	0.612	0.031	5.0	0.035	5.7
Human serum 2	0.846	0.035	4.1	0.037	4.4
Human serum 3	1.46	0.052	3.6	0.057	3.9
Human serum 4	3.08	0.063	2.0	0.069	2.2
Human serum 5	5.75	0.110	1.9	0.150	2.6
PC Cardiac II 1	1.38	0.037	2.7	0.041	3.0
PC Cardiac II 2	3.16	0.072	2.3	0.079	2.5

Method comparison

A comparison of the Elecsys Digoxin assay, [REF] 07027214190 (**cobas e** 801 analyzer; y) with the Elecsys Digoxin assay, [REF] 11820796190 (**cobas e** 601 analyzer; x) gave the following correlations (ng/mL):

Number of samples measured: 143

Passing/Bablok ²³	Linear regression
y = 1.00x + 0.00274	y = 0.972x + 0.0356
т = 0.970	r = 0.998

The sample concentrations were between 0.215 and 4.95 ng/mL.

A comparison of the Elecsys Digoxin assay, [REF] 07027214190 (**cobas e** 402 analyzer; y) with the Elecsys Digoxin assay, [REF] 07027214190 (**cobas e** 801 analyzer; x) gave the following correlations (ng/mL):

Number of samples measured: 135

Passing/Bablok ²³	Linear regression
y = 1.03x + 0.0126	y = 1.02x + 0.0192
т = 0.966	r = 0.999

The sample concentrations were between 0.267 and 4.59 ng/mL.

Analytical specificity

For the co-analytes tested, the following relative co-analyte reactivities were found:

Co-analyte	Concentration ED50 ng/mL	Relative co-analyte reactivity %
α-Acetyldigoxin	1.18	77.9
β-Acetyldigoxin	1.09	84.4
β-Methyldigoxin	1.05	87.9
Lanatoside C	1.31	65.2
Deslanoside	1.08	85.6
Digoxigenin-bis- digitoxoside	0.853	108
Digoxigenin-mono- digitoxoside	0.603	141

Substances	Concentration tested ng/mL	Cross-reactivity %
Digitoxin	250	0.522
Digitoxigenin	250	0.529
Digoxigenin	6.00	31.3

Substances	Concentration tested ng/mL	Cross-reactivity %
Dihydrodigoxin	1000	0.201
K-Strophanthin	1250	0.137

No significant cross-reactivity (< 0.01 %) was found for the following substances (tested concentration 5000 ng/mL; 10000 ng/mL for Cortisol): Cortisol, prednisone, β -estradiol, d-aldosterone, DHEA, dexamethasone, furosemide, sulthiame, quinidine (free base) and oleandrin. For testosterone and ouabain a cross-reactivity of < 0.1 % was found at 5000 ng/mL. For progesterone a cross-reactivity of < 0.05 % was found at 5000 ng/mL.

References

- 1 Hauptman PJ, Kelly RA. Digitalis. Circulation 1999;99:1265-1270.
- 2 Katz A, Lifshitz Y, Bab-Dinitz E, et al. Selectivity of Digitalis Glycosides for Isoforms of Human Na,K-ATPase. J Biol Chem 2010 Jun;285(25) 19582-19592.
- 3 Eichhorn EJ, Gheorghiade M. Digoxin. Progress Cardiovasc Diseases 2002 Jan/Feb;44(4):251-266.
- 4 Gheorghiade M, van Veldhuisen DJ, Colucci WS. Contemporary Use of Digoxin in the Management of Cardiovascular Disorders. Circulation 2006;113:2556-2564.
- 5 Hoffman BF, Bigger JT Jr. In: Gilman AG, Goodman LS, Gilman A, eds. The Pharmacological Basis of Therapeutics. 6th ed. New York, NY: MacMillan; 1980:729-760.
- 6 Oellerich M. Pharmaka (Drug monitoring). In: Thomas L (ed.). Labor und Diagnose, TH-Books, Frankfurt, 5. edition, 1998:1174. Englisch: Clinical Laboratory. 1st English Edition 1998:1151.
- 7 Jortani SA, Valdes R Jr. Digoxin and Its Related Endogenous Factors. Critical Reviews Clin Lab Sci 1997;34(3):225-274.
- 8 Rathore SS, Curtis JP, Wang Y, et al. Association of Serum Digoxin Concentration and Outcome in Patients with Heart Failure. JAMA 2003 Feb;289(7):871-878.
- 9 Adams KF, Patterson JH, Gattis WA, et al. Relationship of Serum Digoxin Concentration to Mortality and Morbidity in Women in the Digitalis Investigation Group Trail. J Am Coll Cardiology 2005;46(3):497-504.
- 10 Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62(16):e147-e239.
- 11 Lindenbaum J, Mellow MH, Blackstone MO, et al. Variation in Biologic Availability of Digoxin from Four Preparations. New Engl J Med 1971;285:1344-1347.
- 12 Lindenbaum J, Butler VP Jr., Murphy JE, et al. Correlation of Digoxin-Tablet Dissolution Rate with Biological Availability. Lancet 1973;1:1215-1217.
- 13 Jelinek HF, Warner P. Digoxin therapy in the elderly: pharmacokinetic considerations in nursing. Geriatr Nurs. 2011;4:263-269.
- 14 Butler VP Jr., Lindenbaum J. Serum Digitalis Measurements in the Assessment of Digitalis Resistance and Sensitivity. Am J Med 1975;58:460-469.
- 15 Frendl G, Sodickson AC, Chung MK, et al. 2014 AATS guidelines for the prevention and management of perioperative atrial fibrillation and flutter for thoracic surgical procedures. J Thorac cardiovasc Surg 2014;148(3):e153-93.
- 16 Keys PW, Stafford RW. In: Taylor WJ, Finn AL, eds. Individualizing Drug Therapy: Practical Applications of Drug Monitoring. New York, Gross, Townsend, Frank, Inc; 1981; vol 3:1-21.
- 17 Valdes R Jr. Endogenous digoxin-like immunoreactive factors: impact on digoxin measurements and potential physiological implications. Clin Chem 1985;31(9):1525-1532.
- 18 Valdiva R, Hornig Y, Gross S, et al. Digoxin-like Immunoreactive Factor Cross-reactivity in the CEDIA Digoxin R Assay on the RA-1000. Clin Chem 1990;36(6):1111.

cobas®

cobas®

- 19 DigiFab® Package Insert. P12011D (1-Aug-2014). BTG International Inc.
- 20 Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 2008;29:2388-2442.
- 21 Terra SG, Washam JB, Dunham GD, et al. Therapeutic Range of Digoxin's Efficacy in Heart Failure: What Is The Evidence? Pharmacotherapy 1999;19(10):1123-1126.
- 22 Matzuk MM, Shlomchik M, Shaw LM. Therapeutic Drug Monitoring 1991;13:215-219.
- 23 Bablok W, Passing H, Bender R, et al. A general regression procedure for method transformation. Application of linear regression procedures for method comparison studies in clinical chemistry, Part III. J Clin Chem Clin Biochem 1988 Nov;26(11):783-790.

For further information, please refer to the appropriate operator's manual for the analyzer concerned, the respective application sheets, the product information and the Method Sheets of all necessary components (if available in your country).

A point (period/stop) is always used in this Method Sheet as the decimal separator to mark the border between the integral and the fractional parts of a decimal numeral. Separators for thousands are not used.

Any serious incident that has occurred in relation to the device shall be reported to the manufacturer and the competent authority of the Member State in which the user and/or the patient is established.

The Summary of Safety & Performance Report can be found here: https://ec.europa.eu/tools/eudamed

Symbols

Roche Diagnostics uses the following symbols and signs in addition to those listed in the ISO 15223-1 standard (for USA: see dialog.roche.com for definition of symbols used):

CONTENT	Contents of kit
SYSTEM	Analyzers/Instruments on which reagents can be used
REAGENT	Reagent
CALIBRATOR	Calibrator
\rightarrow	Volume after reconstitution or mixing
GTIN	Global Trade Item Number

COBAS, COBAS E, ELECSYS and PRECICONTROL are trademarks of Roche. INTRALIPID is a trademark of Fresenius Kabi AB.

All other product names and trademarks are the property of their respective owners. Additions, deletions or changes are indicated by a change bar in the margin.

© 2021, Roche Diagnostics

C E 0123

Roche Diagnostics GmbH, Sandhofer Strasse 116, D-68305 Mannheim www.roche.com

