Bicarbonate Liquid
Order information

<table>
<thead>
<tr>
<th>REF</th>
<th>CONTENT</th>
<th>Analyzer(s) on which cobas c pack(s) can be used</th>
</tr>
</thead>
<tbody>
<tr>
<td>03289923</td>
<td>Bicarbonate Liquid (250 tests)</td>
<td>System-ID 07 6725 5 cobas c 311, cobas c 501/502</td>
</tr>
<tr>
<td>20751995</td>
<td>Ammonia/Ethanol/CO2 Calibrator (2 x 4 mL)</td>
<td>Code 688 cobas c 311, cobas c 501/502</td>
</tr>
<tr>
<td>20752401</td>
<td>Ammonia/Ethanol/CO2 Control Normal (5 x 4 mL)</td>
<td>Code 100 cobas c 501/502</td>
</tr>
<tr>
<td>20753009</td>
<td>Ammonia/Ethanol/CO2 Control Abnormal (5 x 4 mL)</td>
<td>Code 101 cobas c 501/502</td>
</tr>
<tr>
<td>12149435</td>
<td>Precinorm U plus (10 x 3 mL)</td>
<td>Code 300 cobas c 501/502</td>
</tr>
<tr>
<td>12149435</td>
<td>Precinorm U plus (10 x 3 mL, for USA)</td>
<td>Code 300 cobas c 501/502</td>
</tr>
<tr>
<td>12149443</td>
<td>Preciphath U plus (10 x 3 mL)</td>
<td>Code 301 cobas c 501/502</td>
</tr>
<tr>
<td>12149443</td>
<td>Preciphath U plus (10 x 3 mL, for USA)</td>
<td>Code 301 cobas c 501/502</td>
</tr>
</tbody>
</table>

Intended use
In vitro test for the quantitative determination of bicarbonate (HCO₃⁻) in human serum and plasma on Roche/Hitachi cobas c systems.

Summary
Bicarbonate is the second largest fraction of the anions in plasma. Included in this fraction are the bicarbonate (HCO₃⁻) and carbonate (CO₃²⁻) ions, as well as the carbamino compounds. At the physiological pH of blood, the concentration of carbonate is 1/1000 that of bicarbonate. The carbamino compounds are also present in such low quantities that they are generally not mentioned specifically.

Several different methods for the determination of bicarbonate in serum and plasma have been reported. Most of these procedures utilize acidification of the sample and conversion of all carbon dioxide to CO₂ gas.¹ The amount of gas formed is measured by manometric or volumetric devices, ion selective electrodes, or spectrophotometric techniques.² These methods are either cumbersome, time-consuming, technique-oriented, and/or require special equipment.

Enzymatic procedures using phosphoenolpyruvate carboxylase (PEPC) have been described.³⁴ The bicarbonate content of serum or plasma is a significant indicator of electrolyte dispersion and anion deficit. Together with pH determination, bicarbonate measurements are used in the diagnosis and treatment of numerous potentially serious disorders associated with acid-base imbalance in the respiratory and metabolic systems.

Test principle
Bicarbonate reacts with phosphoenolpyruvate (PEP) in the presence of PEPC to produce oxaloacetate and phosphate:

\[
\text{PEPC} \\
\text{PEP} + \text{HCO}_3^- \rightarrow \text{oxaloacetate} + \text{H}_2\text{PO}_4^-
\]

The above reaction is coupled with one involving the transfer of a hydrogen ion from NADH analog to oxaloacetate using MDH.

\[
\text{MDH} \\
\text{Oxaloacetate + NADH analog + H}^+ \rightarrow \text{malate + NAD}^+ \text{ analog}
\]

The resultant consumption of NADH analog causes a decrease in absorbance, which is proportional to the concentration of bicarbonate in the sample being assayed.

Reagents - working solutions
R1 Phosphoenolpyruvate: ≥ 40 mmol/L; NADH analog: ≥ 2 mmol/L; MDH (porcine): ≥ 314.3 µkat/L; PEPC (microbial): ≥ 30.8 µkat/L

R1 is in position B.

Precautions and warnings
For in vitro diagnostic use.
Exercise the normal precautions required for handling all laboratory reagents.
Disposal of all waste material should be in accordance with local guidelines.
Safety data sheet available for professional user on request.

For USA: Caution: Federal law restricts this device to sale by or on the order of a physician.

Reagent handling
Ready for use

Storage and stability
CO2-L

Shelf life at 2-8 °C: See expiration date on cobas c pack label.
On-board in use and refrigerated on the analyzer: 6 weeks

Specimen collection and preparation
For specimen collection and preparation use suitable tubes or collection containers.

Only the specimens listed below were tested and found acceptable.

Serum
Plasma: Li-heparin plasma

The preferred specimen is from venous blood collected anaerobically in the usual manner for bicarbonate analysis. Bicarbonate content in uncapped tubes decreases approximately 4 mmol/L after one hour.⁶ It has been reported that alkalinized serum stored in open cups is stable for up to 4 hours.⁷

Storage of serum at -20 °C or -80 °C for up to 6 months had no significant effect.⁷

The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e. not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Centrifuge samples containing precipitates before performing the assay.

See the limitations and interferences section for details about possible sample interferences.

Sample stability claims were established by experimental data by the manufacturer or based on reference literature and only for the temperatures/time frames as stated in the method sheet. It is the responsibility of the individual laboratory to use all available references and/or its own studies to determine specific stability criteria for its laboratory.

Stability: 7 days at 4-8 °C⁶
40 hours at 15-25 °C⁹,¹⁰

Separate from erythrocytes and store tightly stoppered.

2018-12, V 12.0 English 1 / 4
Materials provided
See “Reagents – working solutions” section for reagents.

Materials required (but not provided)
See “Order information” section
General laboratory equipment

Assay
For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator’s manual for analyzer-specific assay instructions.
The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma

cobas c 311 test definition
Assay type 2-Point Rate
Reaction time / Assay points 10 / 2-18 (STAT 4 / 2-18)
Wavelength (sub/main) 505/415 nm
Reaction direction Decrease
Unit mmol/L
Reagent pipetting
R1 50 µL 130 µL
R2 – –
Sample volumes
Normal 2 µL – –
Decreased 2 µL – –
Increased 4 µL – –

Sample volumes Sample Sample
Sample dilution Sample Diluent (H2O)

Normal 2 µL – –
Decreased 2 µL – –
Increased 4 µL – –

Calibration
Calibrators
S1: H2O
S2: Ammonia/Ethanol /CO2
Calibrator
Calibration mode Linear
Calibration frequency 2-point calibration
- after reagent lot change
- as required following quality control procedures

Calibration interval may be extended based on acceptable verification of calibration by the laboratory.
Traceability: This method has been standardized against a primary standard.

Quality control
For quality control, use control materials as listed in the “Order information” section. In addition, other suitable control material can be used.
The control intervals and limits should be adapted to each laboratory’s individual requirements. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the defined limits.
Follow the applicable government regulations and local guidelines for quality control.

Calculation
Roche/Hitachi cobas c systems automatically calculate the analyte concentration of each sample.

Limitations – interference
Criterion: Recovery within ± 10 % of initial value at a bicarbonate concentration of 22 mmol/L.
Icterus:11 No significant interference up to an L index of 60 for conjugated and unconjugated bilirubin (approximate conjugated and unconjugated bilirubin concentration: 1026 µmol/L or 60 mg/dL).
Hemolysis:11 No significant interference up to an H index of 600 (approximate hemoglobin concentration: 372.6 µmol/L or 600 mg/dL).
Lipemia (Intralipid):11 No significant interference up to an L index of 1800. There is poor correlation between the L index (corresponds to turbidity) and triglycerides concentration.
Immunoglobulins: No significant interference from immunoglobulins up to a concentration of 35 g/L (233.5 µmol/L) (simulated by human immunoglobulin G).
Drugs: No interference was found at therapeutic concentrations using common drug panels.12,13
In very rare cases, gammopathy, in particular type IgM (Waldenström’s macroglobulinemia), may cause unreliable results.14

For diagnostic purposes, the results should always be assessed in conjunction with the patient’s medical history, clinical examination and other findings.
An abnormally elevated concentration of ambient carbon dioxide (CO2) may occur under certain environmental conditions in the laboratory. The fluctuating ambient CO2 concentration may interfere with the CO2-L assay leading to higher CO2 results. Under these circumstances, the reduction of the re-calibration interval may become necessary if the laboratory is unable to keep the ambient CO2 concentration at a normal level by appropriate countermeasures.

ACTIONS REQUIRED
Special Wash Programming: The use of special wash steps is mandatory when certain test combinations are run together on Roche/Hitachi cobas c systems. The latest version of the carry-over evasion list can be
found with the NaOH/D-SM-SmpClh1+2-SCCSS Method Sheets. For further instructions refer to the operator’s manual. **cobas c 502 analyzer:** All special wash programming necessary for avoiding carry-over is available via the **cobas** link, manual input is required in certain cases. Where required, special wash/carry-over evasion programming must be implemented prior to reporting results with this test.

Limits and ranges

Measuring range

2-50 mmol/L

Lower limits of measurement

Lower detection limit of the test: 2 mmol/L

The lower detection limit represents the lowest measurable analyte level that can be distinguished from zero. It is calculated as the value lying 3 standard deviations above that of the lowest standard (standard 1 + 3 SD, repeatability, n = 21).

Expected values

22-29 mmol/L

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Precision

Precision was determined using human samples and controls in an internal protocol with repeatability (n = 21) and intermediate precision (3 aliquots per run, 1 run per day, 21 days). The following results were obtained:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Mean</th>
<th>SD ± CV</th>
<th>Mean</th>
<th>SD ± CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia/Ethanol/CO2 Control Normal</td>
<td>16.1 ± 0.2</td>
<td>1.0 ± 0.8</td>
<td>16.1 ± 0.2</td>
<td>0.7 ± 0.8</td>
</tr>
<tr>
<td>Ammonia/Ethanol/CO2 Control Abnormal</td>
<td>16.0 ± 0.1</td>
<td>0.8 ± 0.8</td>
<td>27.0 ± 0.2</td>
<td>0.8 ± 0.8</td>
</tr>
</tbody>
</table>

Intermediate precision

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Mean</th>
<th>SD ± CV</th>
<th>Mean</th>
<th>SD ± CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia/Ethanol/CO2 Control Normal</td>
<td>17.6 ± 0.2</td>
<td>1.3 ± 1.0</td>
<td>30.5 ± 0.4</td>
<td>1.4 ± 1.0</td>
</tr>
<tr>
<td>Ammonia/Ethanol/CO2 Control Abnormal</td>
<td>9.90 ± 0.23</td>
<td>2.3 ± 2.3</td>
<td>26.3 ± 0.3</td>
<td>1.3 ± 1.3</td>
</tr>
</tbody>
</table>

Method comparison

Bicarbonate values for human serum and plasma samples obtained on a Roche/Hitachi **cobas c 501 analyzer** (y) were compared with those determined using the corresponding reagent on a Roche/Hitachi 917 analyzer (x).

Sample size (n) = 73

Passing/Bablok

\[
\begin{align*}
y &= 1.017x - 0.053 \text{ mmol/L} \\
\tau &= 0.976 \\
r &= 0.998
\end{align*}
\]

The sample concentrations were between 2.54 and 49.9 mmol/L.

References

A point (period/stop) is always used in this Method Sheet as the decimal separator to mark the border between the integral and the fractional parts of a decimal numeral. Separators for thousands are not used.

Symbols

Roche Diagnostics uses the following symbols and signs in addition to those listed in the ISO 15223-1 standard (for USA: see https://usdiagnostics.roche.com for definition of symbols used):

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>STIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume after reconstitution or mixing</td>
<td>Global Trade Item Number</td>
</tr>
</tbody>
</table>

FOR US CUSTOMERS ONLY: LIMITED WARRANTY

Roche Diagnostics warrants that this product will meet the specifications stated in the labeling when used in accordance with such labeling and will be free from defects in material and workmanship until the expiration date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.

cobas®, PRECINORM and PRECISION are trademarks of Roche.

All other product names and trademarks are the property of their respective owners. Additions, deletions or changes are indicated by a change bar in the margin.