

REF		Σ	SYSTEM
07475918190	07475010500	100	cobas e 402
	07475918500		cobas e 801

English

System information

Short name	ACN (application code number)
IGF-1	10116

Intended use

Immunoassay for the in vitro quantitative determination of insulin-like growth factor-1 (IGF-1) in human serum and plasma. The IGF-1 determination is intended to be used as an aid in the assessment of growth disorders in conjunction with other clinical and laboratory findings.

The **e**lectro**c**hemiluminescence **i**mmuno**a**ssay "ECLIA" is intended for use on **cobas e** immunoassay analyzers.

Summary

IGF-1, a 70 amino-acid polypeptide with a molecular mass of 7.5 kDa,¹ is ubiquitously expressed in every tissue but it is mainly synthesized and secreted by the liver (~75 % of circulating IGF-1) and regulated by growth hormone (GH).² Around 80 % of IGF-1 in the circulation is bound in a ternary complex with IGFBP-3 (Insulin-like growth factor binding-protein 3) and ALS (Acid-labile subunit). The half-life of IGF-1 in this complex is around one hour. Another 20 % of IGF-1 is bound to IGFBP-3 without ALS. Only 1 % of IGF-1 is not bound at all with a half-life of only a few minutes.³

IGF-1 (also known as somatomedin)⁴ was the first established marker to screen for growth hormone deficiency (GHD).⁵ GH is secreted in pulses peaking every 60-90 minutes and has a short half-life. Additionally, GH levels are affected by external factors (e.g. exercise, fasting). In contrast, IGF-1 levels are more robust and as a consequence, the determination of IGF-1 is widely used as a first step in diagnosis of both GH deficiency and excess.⁶

Short stature in children is mainly caused by conditions that affect the growth plates. In case no reason is found, the diagnosis is idiopathic short stature (ISS). GHD is one such condition that affects the growth plates. In this context, IGF-1 is one of several laboratory parameters recommended in guidelines to identify the cause of short stature in children. In combination with other assessments an IGF-1 value around the mean value of age or upper half of normal range of IGF-1 makes a GHD unlikely and no further testing would be required. Low IGF-1 concentrations (< 2 SD) would indicate a GHD with a high likelihood and should be confirmed with a GH-stimulation test. A GH-stimulation test would also be indicated with IGF-1 serum levels in the lower half of the normal range combined with clinical manifestations of GHD.

GHD is also observed in adults. Interpretation of IGF-1 levels in the context of adults with GHD is different from short stature children. In adults a normal IGF-1 level does not exclude GHD. A very low IGF-1 level (< 2 SD) in patients with highly suspected GHD, or with long-lasting adult-onset, or multiple or total hypopituitarism may be considered as GHD without a GH-stimulation test. 9.10

The determination of IGF-1 is also recommended for screening of growth disorders by GH excess like acromegaly. 11

Test principle

Sandwich principle. Total duration of assay: 18 minutes.

- 1st incubation: Complexed antigen in the sample (6 μL) and diluted HCl react to cleave IGF-1 from IGFBP-3 and ALS.
- 2nd incubation: A biotinylated monoclonal IGF-1-specific antibody and a
 monoclonal IGF-1-specific antibody labeled with a ruthenium complex^a)
 react to form a sandwich complex. After addition of streptavidin-coated
 microparticles, the complex becomes bound to the solid phase via
 interaction of biotin and streptavidin.
- The reaction mixture is aspirated into the measuring cell where the microparticles are magnetically captured onto the surface of the electrode. Unbound substances are then removed with ProCell II M. Application of a voltage to the electrode then induces chemiluminescent emission which is measured by a photomultiplier.

 Results are determined via a calibration curve which is instrumentspecifically generated by 2-point calibration and a master curve provided via the cobas link.

a) Tris(2,2'-bipyridyl)ruthenium(II)-complex (Ru(bpy)3+)

Reagents - working solutions

The cobas e pack is labeled as IGF-1.

- M Streptavidin-coated microparticles, 1 bottle, 5.8 mL: Streptavidin-coated microparticles 0.72 mg/mL; preservative.
- R1 Diluted HCl, 1 bottle, 10.3 mL: pH 1.5.
- R2 Anti-IGF-1-Ab~biotin, anti-IGF-1-Ab~Ru(bpy) $_3^{2+}$, 1 bottle, 10.3 mL: Biotinylated monoclonal anti-IGF-1 antibody (mouse) 0.6 µg/mL; monoclonal anti-IGF-1 antibody (mouse) labeled with ruthenium complex 1.5 µg/mL; phosphate buffer 100 mmol/L, pH 7.8; preservative.

Precautions and warnings

For in vitro diagnostic use for health care professionals. Exercise the normal precautions required for handling all laboratory reagents.

Infectious or microbial waste:

Warning: handle waste as potentially biohazardous material. Dispose of waste according to accepted laboratory instructions and procedures.

Environmental hazards:

Apply all relevant local disposal regulations to determine the safe disposal. Safety data sheet available for professional user on request.

This kit contains components classified as follows in accordance with the Regulation (EC) No. 1272/2008:

Warning

H317 May cause an allergic skin reaction.

Prevention:

P261 Avoid breathing mist or vapours.

P272 Contaminated work clothing should not be allowed out of

the workplace.

P280 Wear protective gloves.

Response:

P333 + P313 If skin irritation or rash occurs: Get medical

advice/attention.

P362 + P364 Take off contaminated clothing and wash it before reuse.

Disposal:

P501 Dispose of contents/container to an approved waste

disposal plant.

Product safety labeling follows EU GHS guidance.

Contact phone: all countries: +49-621-7590, USA: 1-800-428-2336 Avoid foam formation in all reagents and sample types (specimens, calibrators and controls).

Reagent handling

The reagents in the kit have been assembled into a ready-for-use unit that cannot be separated.

All information required for correct operation is available via the **cobas** link.

Storage and stability

Store at 2-8 °C.

Do not freeze

Store the **cobas e** pack **upright** in order to ensure complete availability of the microparticles during automatic mixing prior to use.

Stability:	
unopened at 2-8 °C	up to the stated expiration date
on the analyzers	16 weeks

Specimen collection and preparation

Only the specimens listed below were tested and found acceptable. Serum collected using standard sampling tubes or tubes containing separating gel.

Li-heparin, K₂-EDTA and K₃-EDTA plasma.

Plasma tubes containing separating gel can be used.

Criterion: Slope 0.9-1.1 + intercept within \leq ± 7 ng/mL + coefficient of correlation \geq 0.95.

Stable for 24 hours at 15-25 °C, 48 hours at 2-8 °C, 28 days at -20 °C (± 5 °C). Freeze only once.

The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e. not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Centrifuge samples containing precipitates before performing the assay. Do not use samples and controls stabilized with azide.

Ensure the samples and calibrators are at 20-25 °C prior to measurement. Due to possible evaporation effects, samples and calibrators on the analyzers should be analyzed/measured within 2 hours.

Materials provided

See "Reagents – working solutions" section for reagents.

Materials required (but not provided)

- REF 07475969190, CalSet IGF-1, for 4 x 1.0 mL
- REF 07476108190, PreciControl Growth, for 4 x 3.0 mL
- REF 07299001190, Diluent Universal, 36 mL sample diluent
- General laboratory equipment
- cobas e analyzer

Additional materials for **cobas e** 402 and **cobas e** 801 analyzers:

- REF 06908799190, ProCell II M, 2 x 2 L system solution
- REF 04880293190, CleanCell M, 2 x 2 L measuring cell cleaning solution
- REF 07485409001, Reservoir Cup, 8 cups to supply ProCell II M and CleanCell M
- REF 06908853190, PreClean II M, 2 x 2 L wash solution
- REF 05694302001, Assay Tip/Assay Cup tray, 6 magazines x 6 magazine stacks x 105 assay tips and 105 assay cups, 3 wasteliners
- REF 07485425001, Liquid Flow Cleaning Cup, 2 adaptor cups to supply ISE Cleaning Solution/Elecsys SysClean for Liquid Flow Cleaning Detection Unit
- REF 07485433001, PreWash Liquid Flow Cleaning Cup, 1 adaptor cup to supply ISE Cleaning Solution/Elecsys SysClean for Liquid Flow Cleaning PreWash Unit
- REF 11298500316, ISE Cleaning Solution/Elecsys SysClean, 5 x 100 mL system cleaning solution
- REF 11298500160, ISE Cleaning Solution/Elecsys SysClean, 5 x 100 mL system cleaning solution (for USA)

Assay

For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator's manual for analyzer-specific assay instructions.

Resuspension of the microparticles takes place automatically prior to use.

Place the cooled (stored at 2-8 °C) **cobas e** pack on the reagent manager. Avoid foam formation. The system automatically regulates the temperature of the reagents and the opening/closing of the **cobas e** pack.

Calibration

Traceability: This method has been standardized against the WHO International Standard 02/254.

The predefined master curve is adapted to the analyzer using the relevant CalSet.

Calibration frequency: Calibration must be performed once per reagent lot using fresh reagent (i.e. not more than 24 hours since the **cobas e** pack was registered on the analyzer).

Calibration interval may be extended based on acceptable verification of calibration by the laboratory.

Renewed calibration is recommended as follows:

- after 12 weeks when using the same reagent lot
- after 28 days when using the same cobas e pack on the analyzer
- as required: e.g. quality control findings outside the defined limits

Quality control

Use $\mbox{PreciControl}$ Growth or other suitable controls for routine quality control procedures.

Controls for the various concentration ranges should be run individually at least once every 24 hours when the test is in use, once per **cobas e** pack, and following each calibration.

The control intervals and limits should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the defined limits.

If necessary, repeat the measurement of the samples concerned. Follow the applicable government regulations and local guidelines for quality control.

Calculation

The analyzer automatically calculates the analyte concentration of each sample (either in ng/mL, $\mu g/L$ or nmol/L).

Conversion factors: $ng/mL \times 1 = \mu g/L$ $ng/mL \times 0.131 = nmol/L$

Limitations - interference

The effect of the following endogenous substances and pharmaceutical compounds on assay performance was tested. Interferences were tested up to the listed concentrations and no impact on results was observed.

Endogenous substances

Compound	Concentration tested
Bilirubin	≤ 1129 µmol/L or ≤ 66 mg/dL
Hemoglobin	≤ 0.311 mmol/L or ≤ 500 mg/dL
Intralipid	≤ 2000 mg/dL
Biotin	≤ 205 nmol/L or ≤ 50 ng/mL
Rheumatoid factors	≤ 1200 IU/mL
IgG	≤ 3.3 g/dL
IgA	≤ 0.5 g/dL
IgM	≤ 1.0 g/dL
Albumin	≤ 7.0 g/dL

Criterion: Recovery within \pm 4 ng/mL for IGF-1 concentrations \leq 40 ng/mL or \pm 10 % for concentrations > 40 ng/mL of initial value.

Samples should not be taken from patients receiving therapy with high biotin doses (i.e. > 5 mg/day) until at least 8 hours following the last biotin administration

There is no high-dose hook effect at IGF-1 concentrations up to 20000 ng/mL.

Pharmaceutical substances

In vitro tests were performed on 16 commonly used pharmaceuticals. No interference with the assay was found.

In addition, the following special growth disorder drugs were tested. No interference with the assay was found.

Special growth disorder drugs

Drug	Concentration tested mg/L
Somatotropin	3.0
Octreotide	1.5
Pegvisomant	80

In rare cases, interference due to extremely high titers of antibodies to analyte-specific antibodies, streptavidin or ruthenium can occur. These effects are minimized by suitable test design.

For diagnostic purposes, the results should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.

Limits and ranges

Measuring range

7-1600 ng/mL (defined by the Limit of Detection and the maximum of the master curve). Values below the Limit of Detection are reported as < 7 ng/mL. Values above the measuring range are reported as

> 1600 ng/mL (or up to 16000 ng/mL for 10-fold diluted samples).

Lower limits of measurement

Limit of Blank, Limit of Detection and Limit of Quantitation

Limit of Blank = 3.5 ng/mL

Limit of Detection = 7 ng/mL

Limit of Quantitation = 15 ng/mL

The Limit of Blank, Limit of Detection and Limit of Quantitation were determined in accordance with the CLSI (Clinical and Laboratory Standards Institute) EP17-A2 requirements.

The Limit of Blank is the 95^{th} percentile value from $n \ge 60$ measurements of analyte-free samples over several independent series. The Limit of Blank corresponds to the concentration below which analyte-free samples are found with a probability of 95%.

The Limit of Detection is determined based on the Limit of Blank and the standard deviation of low concentration samples. The Limit of Detection corresponds to the lowest analyte concentration which can be detected (value above the Limit of Blank with a probability of 95 %).

The Limit of Quantitation is the lowest analyte concentration that can be reproducibly measured with an intermediate precision CV of \leq 20 %.

Dilution

Samples with IGF-1 concentrations above the measuring range can be diluted with Diluent Universal. The recommended dilution is 1:10 (either automatically by the analyzers or manually). The concentration of the diluted sample must be > 140 ng/mL.

After manual dilution, multiply the result by the dilution factor.

After dilution by the analyzers, the software automatically takes the dilution into account when calculating the sample concentration.

Expected values

Expected values were obtained in a clinical study (CIM RD002173) that enrolled over 3000 female and over 3500 male subjects, including over 1400 subjects \leq 17 years old.

See "Distribution of expected values" section for details.

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Precision

Precision was determined using Elecsys reagents, samples and controls in a protocol (EP05-A3) of the CLSI (Clinical and Laboratory Standards Institute): 2 runs per day in duplicate each for 21 days (n = 84). The following results were obtained:

cobas e 402 and cobas e 801 analyzers					
		Repeatability		Intermediate precision	
Sample	Mean ng/mL	SD ng/mL	CV %	SD ng/mL	CV %
Human serum 1	9.47	0.475	5.0	0.551	5.8
Human serum 2	147	1.68	1.1	2.44	1.7
Human serum 3	566	9.80	1.7	15.1	2.7
Human serum 4	837	10.7	1.3	14.9	1.8
Human serum 5	1576	55.2	3.5	61.1	3.9
PCb) Growth 1	53.7	0.513	1.0	0.772	1.4
PC Growth 2	331	2.95	0.9	3.95	1.2

b) PreciControl

Method comparison

a) A comparison of the Elecsys IGF-1 assay, REF 07475918190 (**cobas e** 801 analyzer; y), with the Elecsys IGF-1 assay, REF 07475896190 (**cobas e** 601 analyzer; x), gave the following correlations (ng/mL):

Number of samples measured: 138

Passing/Bablok¹² Linear regression y = 1.00x - 1.86 y = 1.00x - 2.10 r = 0.985 r = 1.00

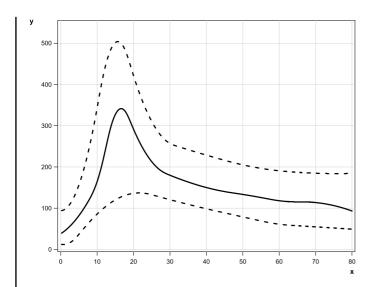
The sample concentrations were between 9.76 ng/mL and 1560 ng/mL. b) A comparison of the Elecsys IGF-1 assay, REF 07475918190 (**cobas e** 402 analyzer; y), with the Elecsys IGF-1 assay, REF 07475918190 (**cobas e** 801 analyzer; x), gave the following correlations (ng/mL):

Number of samples measured: 149

Passing/Bablok¹² Linear regression y = 1.00x - 0.616 y = 1.02x - 2.28 r = 0.986 r = 0.999

The sample concentrations were between 12.6 ng/mL and 1580 ng/mL.

Analytical specificity


No significant cross-reactivity was found for the following substances:

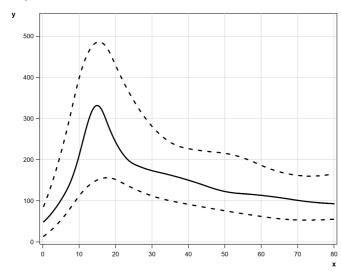
Substances	Concentration tested
IGF-2	4000 ng/mL
IGFBP-3	20000 ng/mL
Insulin	1000 mIU/mL
Proinsulin	1000 nmol/L

Distribution of expected values

The graphic below depicts the distribution of the expected values for male subjects:

x-axis: age y-axis: IGF-1 value in ng/mL solid line: 50 % quantile dashed line: 2.5 % and 97.5 % quantile

The table below is a representative read-out of the age-depended expected $% \left(x\right) =\left(x\right) +\left(x\right) +$ values based on the graphic depicted above. The values represent the indicated quantiles (2.5 %, 50 % and 97.5 %) for each age.


Male subjects					
Age (years)	N	2.5 % (ng/mL)	50 % (ng/mL)	97.5 % (ng/mL)	
0.25	41	12.0	39.4	94.1	
0.5	44	11.8	40.9	94.6	
1	59	11.8	44.2	96.4	
2	38	13.9	51.7	104	
3	28	18.9	60.5	116	
4	29	26.8	70.6	134	
5	34	36.6	81.9	156	
6	51	47.1	94.5	184	
7	34	57.5	108	216	
8	58	67.5	123	254	
9	61	76.9	141	296	
10	51	85.7	164	343	
11	49	93.9	194	392	
12	47	101	231	434	
13	42	108	270	467	
14	35	115	304	489	
15	15	120	327	501	
16	13	125	339	503	
17	4	129	340	495	
18	1	132	331	476	
19	2	134	312	450	
20	4	136	291	421	
21	10	137	272	394	
22	10	137	254	370	
23	16	136	238	348	
24	19	135	225	328	

Male subjects					
Age	N	2.5 %	50 %	97.5 %	
(years)		(ng/mL)	(ng/mL)	(ng/mL)	
25	25	132	213	310	
26	15	130	203	295	
27	19	128	194	282	
28	16	125	188	271	
29	18	123	183	263	
30	18	120	180	257	
31	17	118	176	253	
32	16	116	173	250	
33	15	114	170	247	
34	21	111	166	244	
35	14	109	163	242	
36	16	107	160	239	
37	16	105	158	236	
38	19	103	155	234	
39	18	101	152	231	
40	39	98.5	150	229	
41	92	96.4	148	226	
42	93	94.4	146	223	
43	101	92.4	144	221	
44	99	90.5	142	218	
45	75	88.5	140	216	
46	100	86.5	139	214	
47	98	84.6	137	211	
48	79	82.6	136	209	
49	88	80.6	135	207	
50	97	78.7	133	205	
51	61	76.7	132	203	
52	78	74.8	130	201	
53	76	72.8	129	200	
54	54	70.9	127	198	
55	62	68.9	126	196	
56	44	67.0	124	195	
57	63	65.3	122	194	
58	70	63.7	121	193	
59	70	62.3	119	192	
60	61	61.1	118	191	
61	58	60.0	117	190	
62	85	59.2	116	189	
63	62	58.5	116	188	
64	64	57.9	115	188	
65	46	57.4	115	187	
66	57	56.8	115	186	
67	53	56.3	115	186	
68	58	55.8	115	185	
69	68	55.2	114	185	
70	68	54.7	114	185	

Male subjects					
Age (years)	N	2.5 % (ng/mL)	50 % (ng/mL)	97.5 % (ng/mL)	
71	68	54.1	113	184	
72	64	53.6	111	184	
73	72	53.0	110	184	
74	40	52.4	108	184	
75	39	51.9	106	184	
76	32	51.3	104	184	
77	27	50.7	102	184	
78	19	50.2	99.0	184	
79	14	49.6	96.1	184	
80	0	-	-	-	

The graphic below depicts the distribution of the expected values for female subjects:

x-axis: age y-axis: IGF-1 value in ng/mL solid line: 50 % quantile dashed line: 2.5 % and 97.5 % quantile

The table below is a representative read-out of the age-depended expected values based on the graphic depicted above. The values represent the indicated quantiles (2.5 %, 50 % and 97.5 %) for each age

Female subjects					
Age (years)	N	2.5 % (ng/mL)	50 % (ng/mL)	97.5 % (ng/mL)	
0.25	28	13.8	48.8	86.4	
0.5	35	15.4	50.9	92.0	
1	37	18.7	55.3	104	
2	34	26.1	65.0	128	
3	48	34.2	76.0	155	
4	42	43.2	88.2	185	
5	50	53.0	102	216	
6	49	63.6	116	250	
7	37	75.0	133	286	
8	47	87.3	154	324	
9	39	99.9	180	363	

Female subjects					
Age	N	2.5 %	50 %	97.5 %	
(years)		(ng/mL)	(ng/mL)	(ng/mL)	
10	42	112	210	398	
11	50	123	244	427	
12	54	132	278	451	
13	38	140	306	468	
14	38	146	325	480	
15	21	151	331	485	
16	11	154	324	485	
17	14	156	305	479	
18	5	156	283	466	
19	3	155	261	449	
20	13	152	243	429	
21	7	148	227	410	
22	7	143	214	392	
23	15	138	203	375	
24	16	134	195	359	
25	15	130	189	343	
26	18	126	185	329	
27	13	122	182	315	
28	13	118	179	303	
29	14	115	176	292	
30	10	112	173	281	
31	12	109	171	271	
32	10	107	169	263	
33	7	104	167	255	
34	10	102	165	248	
35	11	100	163	242	
36	9	98.3	160	238	
37	14	96.5	158	234	
38	15	94.8	155	231	
39	6	93.1	153	228	
40	51	91.4	150	227	
41	74	89.8	147	225	
42	88	88.1	145	224	
43	79	86.5	142	222	
44	71	84.9	139	221	
45	72	83.3	136	220	
46	53	81.8	132	219	
47	70	80.2	130	218	
48	69	78.7	127	218	
49	94	77.2	125	217	
50	59	75.7	123	215	
51	47	74.3	121	214	
52	52	72.8	120	212	
53	48	71.4	119	210	
54	44	70.0	118	207	
55	68	68.6	117	204	

Female subjects				
Age (years)	N	2.5 % (ng/mL)	50 % (ng/mL)	97.5 % (ng/mL)
56	46	67.3	117	201
57	55	65.9	116	198
58	51	64.6	115	194
59	36	63.3	114	190
60	59	62.0	113	186
61	60	60.7	112	182
62	55	59.5	111	179
63	57	58.3	110	176
64	47	57.3	109	173
65	40	56.3	108	170
66	50	55.5	106	168
67	41	54.8	105	166
68	71	54.2	104	164
69	45	53.8	102	163
70	48	53.5	101	162
71	59	53.3	99.8	161
72	47	53.2	98.7	160
73	44	53.2	97.6	160
74	33	53.3	96.7	160
75	24	53.5	95.8	160
76	24	53.7	95.1	161
77	20	54.0	94.4	162
78	25	54.3	93.9	163
79	10	54.7	93.4	164
80	3	55.1	93.0	166

References

- Nieto-Estevez V, Defterali C, Vicario-Abejon C. IGF-I: A Key Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stage of the Brain. Front Neurosci 2016;10:1-9.
- 2 Aguirre GA, Rodriguez De Ita JR, de la Garzia RG, et al. Insulin-like growth factor-1 deficiency. J Transl Med 2016;14:3-26.
- 3 Ranke MB. Insulin-like growth factor binding-protein-3 (IGFBP-3). Best Pract Res Clin Endocrinol Metab 2015;29:701-711.
- 4 Binoux M, Hossenlopp P, Hardouin S, et al. Somatomedin (Insluin-Like Growth Factor)-Binding Proteins. Horm Res 1986;24:141-151.
- 5 Moore DC, Rogelio HA, Smith EK, et al. Plasma Somatomedin-C as a Screening Test for Growth Hormone Deficniency in Children and Adolescents. Horm Res 1982;16:49-55.
- 6 Ketha H, Singh RJ. Clinical assays for quantitation of insulin-likegrowth-factor-1 (IGF1). Methods 2015;81:93-98.
- Wit JM, Clayton PE, Rogol AD, et al. Idiopathic short stature: Definition, epidemiology, and diagnostic evaluation. Growth Horm IGF Res 2008;18:89-110.
- 8 Cohen P, Rogol AD, Deal CL, et al. Consensus Statement on the Diagnosis and Treatment of Children with Idiopathic Short Stature: A Summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. J Clin Endocrinol Metab 2008;93:4210-4217.

- 9 Ho KKY. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: a statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur J Endocrinol 2007;157:695-700.
- 10 Ghigo E, Aimaretti G, Corneli G. Diagnosis of adult GH deficiency. Growth Hormone & IGF Res 2008;18:1-16.
- 11 Katznelson L, Laws ER, Melmed S, et al. Acromegaly: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2014;99:3933-3951.
- 12 Bablok W, Passing H, Bender R, et al. A general regression procedure for method transformation. Application of linear regression procedures for method comparison studies in clinical chemistry, Part III. J Clin Chem Clin Biochem 1988 Nov;26(11):783-790.

For further information, please refer to the appropriate user guide or operator's manual for the analyzer concerned, the respective application sheets and the Method Sheets of all necessary components (if available in your country).

A point (period/stop) is always used in this Method Sheet as the decimal separator to mark the border between the integral and the fractional parts of a decimal numeral. Separators for thousands are not used.

Any serious incident that has occurred in relation to the device shall be reported to the manufacturer and the competent authority of the Member State in which the user and/or the patient is established.

Symbols

Roche Diagnostics uses the following symbols and signs in addition to those listed in the ISO 15223-1 standard (for USA: see navifyportal.roche.com for definition of symbols used):

CONTENT Contents of kit

SYSTEM Analyzers/Instruments on which reagents can be used

REAGENT Reagent

CALIBRATOR Calibrator

Volume for reconstitution

GTIN Global Trade Item Number

Rx only For USA: Caution: Federal law restricts this device to sale by or on the order of a physician.

FOR US CUSTOMERS ONLY: LIMITED WARRANTY

Roche Diagnostics warrants that this product will meet the specifications stated in the labeling when used in accordance with such labeling and will be free from defects in material and workmanship until the expiration date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.

COBAS, NAVIFY, ELECSYS and PRECICONTROL are trademarks of Roche. INTRALIPID is a trademark of Fresenius Kabi AB.

All other product names and trademarks are the property of their respective owners. Additions, deletions or changes are indicated by a change bar in the margin.

© 2024, Roche Diagnostics

For USA: Rx only

Roche Diagnostics GmbH Sandhofer Strasse 116 68305 Mannheim, Germany www.roche.com

Roche Diagnostics 9115 Hague Road Indianapolis, IN 46256, USA

+1 800 4282336

