0003507190190c501V13.0 GM-2 Tina-quant IgM Gen.2 Order information

REF	CONTENT		Analyzer(s) on which cobas c pack(s) can be used
03507190 190	Tina-quant IgM Gen.2 (150 tests)	System-ID 07 6788 3	Roche/Hitachi cobas c 311, cobas c 501/502
11355279 216	Calibrator f.a.s. Proteins (5 x 1 mL)	Code 656	
11355279 160	Calibrator f.a.s. Proteins (5 x 1 mL, for USA)	Code 656	
10557897 122	Precinorm Protein (3 x 1 mL)	Code 302	
10557897 160	Precinorm Protein (3 x 1 mL, for USA)	Code 302	
11333127 122	Precipath Protein (3 x 1 mL)	Code 303	
11333127 160	Precipath Protein (3 x 1 mL, for USA)	Code 303	
10171743 122	Precinorm U (20 x 5 mL)	Code 300	
03121291 122	Precipath PUC (4 x 3 mL)	Code 241	
05117003 190	PreciControl ClinChem Multi 1 (20 x 5 mL)	Code 391	
05947626 190	PreciControl ClinChem Multi 1 (4 x 5 mL)	Code 391	
05947626 160	PreciControl ClinChem Multi 1 (4 x 5 mL, for USA)	Code 391	
05117216 190	PreciControl ClinChem Multi 2 (20 x 5 mL)	Code 392	
05947774 190	PreciControl ClinChem Multi 2 (4 x 5 mL)	Code 392	
05947774 160	PreciControl ClinChem Multi 2 (4 x 5 mL, for USA)	Code 392	
04489357 190	Diluent NaCl 9 % (50 mL)	System-ID 07 6869 3	

English

System information

For cobas c 311/501 analyzers:

IGM-2: ACN 465 (Standard application)

IGMP2: ACN 274 (Sensitive application)

For cobas c 502 analyzer:

IGM-2: ACN 8465 (Standard application)

IGMP2: ACN 8274 (Sensitive application)

Intended use

In vitro test for the quantitative determination of IgM in human serum and plasma on Roche/Hitachi cobas c systems.

Summary^{1,2,3,4,5,6,7,8,9,10,11,12}

IgM normally consists of 10 heavy µ-chains and 10 kappa or lambda type light chains which are always identical within a molecule. There is also a J-chain linking all the µ-chains together, so that simply speaking, IgM has a pentameric structure when compared to that of IgG. IgM is the largest immunoglobulin molecule (MW = 970000), but makes up only 6 % of the plasma immunoglobulins.

IgM is the first specific antibody to appear in the serum after infection. It is capable of activating complement, thus helping to kill bacteria. After the infection has subsided, IgM levels sink at a relatively rapid rate compared to IgG. This fact is used to advantage in the differential diagnosis of acute and chronic infections by comparing specific IgM and IgG titers. If IgM is prevalent the infection is acute, whereas if IgG predominates the infection is chronic (e.g. rubella, viral hepatitis). Increased polyclonal IgM levels are found in viral, bacterial, and parasitic infections, liver diseases, rheumatoid arthritis, scleroderma, cystic fibrosis and heroin addiction. Monoclonal IgM is increased in Waldenström's macroglobulinemia. Increased loss of IgM is found in protein-losing enteropathies and in burns. Decreased synthesis of IgM occurs in congenital and acquired immunodeficiency syndromes. Due to the slow onset of IgM synthesis, the IgM concentration in serum from infants is lower than in that from adults.

Use of specific antibodies for quantitation of serum proteins has become a valuable diagnostic tool. Light-scattering properties of antigen/antibody aggregates were first observed by Pope and Healey in 1938, and later confirmed by Gitlin and Edelhoch. Ritchie employed turbidimetric measurements to quantitate specific proteins. Quantitation of immunoglobulins can also be done using nephelometric techniques. Polymeric enhancement with polyethylene glycol (PEG) to improve sensitivity and increase the rate of antigen/antibody complex formation has been described by Lizana and Hellsing.

The Roche IgM assay is based on the principle of immunological agglutination.

In addition to the standard application (test IGM-2), there is a sensitive application (test IGMP2) designed for the quantitative determination of low IgM concentrations, e.g. in pediatric samples.

It is known that the so-called paraproteins secreted in monoclonal gammopathies (monoclonal immunoglobulinemia) may differ from the respective immunoglobulins of polyclonal origin by amino acid composition and size. This may impair the binding to antibody and hence impair accurate quantitation.

Test principle

Immunoturbidimetric assay.

Anti-IgM antibodies react with antigen in the sample to form an antigen/antibody complex. Following agglutination, this is measured turbidimetrically. Addition of PEG allows the reaction to progress rapidly to the end point, increases sensitivity, and reduces the risk of samples containing excess antigen producing false negative results.

Reagents - working solutions

- R1 TRIS buffer: 20 mmol/L, pH 8.0; NaCI: 200 mmol/L; polyethylene glycol: 3.6 %; preservative; stabilizers
- **R2** Anti-human IgM antibody (goat): dependent on titer; TRIS buffer: 20 mmol/L, pH 8.0; NaCl: 150 mmol/L; preservative

R1 is in position B and R2 is in position C.

Precautions and warnings

For in vitro diagnostic use.

Exercise the normal precautions required for handling all laboratory reagents.

Disposal of all waste material should be in accordance with local guidelines. Safety data sheet available for professional user on request.

For USA: Caution: Federal law restricts this device to sale by or on the order of a physician.

This kit contains components classified as follows in accordance with the Regulation (EC) No. 1272/2008:

Danger

H318 Causes serious eye damage.

Prevention:

P280 Wear eye protection/ face protection.

Response:

P305 + P351	IF IN EYES: Rinse cautiously with water for several
+ P338	minutes. Remove contact lenses, if present and easy to do.
+ P310	Continue rinsing. Immediately call a POISON CENTER/
	doctor.

Product safety labeling follows EU GHS guidance.

Contact phone: all countries: +49-621-7590, USA: 1-800-428-2336

Reagent handling

Ready for use

Storage and stability

IGM-2	
Shelf life at 2-8 °C:	See expiration date on cobas c pack label.
On-board in use and refrigerated on the analyzer:	12 weeks
Diluent NaCl 9 %	
Shelf life at 2-8 °C:	See expiration date on cobas c pack label.
On-board in use and refrigerated on the analyzer:	12 weeks
Specimen collection and preparation	

For specimen collection and preparation only use suitable tubes or collection containers.

Only the specimens listed below were tested and found acceptable. Standard application (IGM-2):

Serum

Plasma: Li-heparin and K₂-EDTA plasma Sensitive application (IGMP2):

Serum.

Plasma: Li-heparin plasma

The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e. not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.

Centrifuge samples containing precipitates before performing the assay.

See the limitations and interferences section for details about possible sample interferences.

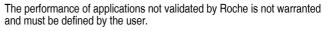
Sample stability claims were established by experimental data by the manufacturer or based on reference literature and only for the temperatures/time frames as stated in the method sheet. It is the responsibility of the individual laboratory to use all available references and/or its own studies to determine specific stability criteria for its laboratory.

Stability:13	3
--------------	---

2 months	at 15-25 °C
4 months	at 2-8 °C
6 months	at (-15)-(-25) °C

Materials provided

See "Reagents - working solutions" section for reagents.


Materials required (but not provided)

See "Order information" section

General laboratory equipment

Assay

For optimum performance of the assay follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator's manual for analyzer-specific assay instructions.

Application for serum and plasma

Standard application (IGM-2)

cobas c 311 test definition

Assay type	2-Point End		
Reaction time / Assay points	10 / 6-31		
Wavelength (sub/main)	700/340 nm		
Reaction direction	Increase		
Units	g/L (µmol/L, m	ng/dL)	
Reagent pipetting		Diluent (H ₂ O)	
R1	120 µL	-	
R2	38 µL	-	
Sample volumes	Sample	Sample	e dilution
		Sample	Diluent (NaCl)
Normal	7.5 μL	9 µL	180 µL
Decreased	3.6 µL	2 µL	180 µL
Increased	9.4 µL	20 µL	85 µL

cobas c 501/502 test definition

Assay type	2-Point End		
Reaction time / Assay points	10 / 10-46		
Wavelength (sub/main)	700/340 nm		
Reaction direction	Increase		
Units	g/L (µmol/L, n	ng/dL)	
Reagent pipetting		Diluent (H ₂ O)	
R1	120 µL	-	
R2	38 µL	-	
Sample volumes	Sample	Sample	e dilution
		Sample	Diluent (NaCl)
Normal	7.5 µL	9 µL	180 µL
Decreased	3.6 µL	2 µL	180 µL
Increased	9.4 µL	20 µL	85 μL

Sensitive application (IGMP2)

cobas c 311 test definition

Assay type	2-Point End		
Reaction time / Assay points	10 / 6-31		
Wavelength (sub/main)	700/340 nm		
Reaction direction	Increase		
Units	g/L (µmol/L, m	ng/dL)	
Reagent pipetting		Diluent (H ₂ O)	
R1	120 µL	-	
R2	38 µL	-	
Sample volumes	Sample	Sample	dilution
		Sample	Diluent (NaCl)
Normal	2.5 µL	-	-
Decreased	8.7 μL	10 µL	95 μL
Increased	10 µL	-	-

cobas c 501/502 test definition

	••••		
Assay type	2-Point End		
Reaction time / Assay points	10 / 10-46		
Wavelength (sub/main)	700/340 nm		
Reaction direction	Increase		
Units	g/L (µmol/L, m	ig/dL)	
Reagent pipetting		Diluent (H ₂ O)	
R1	120 µL	-	
R2	38 µL	-	
Sample volumes	Sample	Sample	dilution
		Sample	Diluent (NaCl)
Normal	2.5 µL	-	-
Decreased	8.7 μL	10 µL	95 µL
Increased	10 µL	-	-

Calibration

Standard application (IGM-2)

Calibrators

S2-S6: C.f.a.s. Proteins

S1: H₂O

Multiply the lot-specific C.f.a.s. Proteins calibrator value by the factors below to determine the standard concentrations for the 6-point calibration curve: S2: 0.150 S5: 1.00

	S3: 0.300	S6: 4.57
	S4: 0.500	
Calibration mode	RCM	

Calibration frequency Full calibration

S1: H₂O

after reagent lot change

as required following quality control procedures

Sensitive application (IGMP2)

S2-S6: C.f.a.s. Proteins

Multiply the lot-specific C.f.a.s. Proteins calibrator value by the factors below to determine the standard concentrations for the 6-point calibration curve:

S2: 0.0250	S5: 0.250
S3: 0.0625	S6: 1.00
S4: 0.125	

Calibration mode RCM

Calibration frequency Full calibration

after reagent lot change

as required following quality control procedures

Calibration interval may be extended based on acceptable verification of calibration by the laboratory.

Traceability: This method has been standardized against the reference preparation of the IRMM (Institute for Reference Materials and Measurements) BCR470/CRM470 (RPPHS - Reference Preparation for Proteins in Human Serum).¹⁴

Quality control

For quality control, use control materials as listed in the "Order information" section.

Standard application (IGM-2):	Precinorm Protein, Precipa PreciControl ClinChem Mu PreciControl ClinChem Mu	ulti 1,
Sensitive application (IGMP2):	Precinorm Protein, Precipa PreciControl ClinChem Mu	,
The control intervals a individual requirement limits. Each laboratory values fall outside the	able control material can be and limits should be adapted ts. Values obtained should to v should establish corrective defined limits. government regulations and	d to each laboratory's fall within the defined e measures to be taken if
Calculation Roche/Hitachi cobas c systems automatically calculate the analyte concentration of each sample.		
Conversion factors:	mg/dL x 0.01 = g/L	g/L x 1.03 = µmol/L

version factors:	mg/dL x 0.01 = g/L	g/L x 1.03 = µmol/L
	g/L x 100 = mg/dL	µmol/L x 0.971 = g/L

Limitations - interference

Standard application (IGM-2):

Criterion: Recovery within \pm 10 % of initial value at an IgM concentration of 0.4 g/L (0.41 $\mu mol/L,$ 40 mg/dL).

lcterus: 15 No significant interference up to an I index of 60 (approximate conjugated and unconjugated bilirubin concentration: 1026 $\mu mol/L$ or 60 mg/dL).

Hemolysis: 15 No significant interference up to an H index of 1000 (approximate hemoglobin concentration: 621 $\mu mol/L$ or 1000 mg/dL).

Lipemia (Intralipid):¹⁵ No significant interference up to an L index of 2000.

There is poor correlation between the L index (corresponds to turbidity) and triglycerides concentration.

High dose hook-effect: No false result occurs up to an IgM concentration of 100 g/L (103 μ mol/L, 10000 mg/dL).

There is no cross-reaction between IgM and IgA or IgG under the assay conditions.

Drugs: No interference was found at the rapeutic concentrations using common drug panels. 16,17

Sensitive application (IGMP2):

Criterion: Recovery within \pm 10 % of initial value at an IgM concentration of 0.2 g/L (0.21 $\mu mol/L,$ 20 mg/dL).

Icterus: 15 No significant interference up to an I index of 60 (approximate conjugated and unconjugated bilirubin concentration: 1026 $\mu mol/L$ or 60 mg/dL).

Hemolysis: 15 No significant interference up to an H index of 600 (approximate hemoglobin concentration: 373 μ mol/L or 600 mg/dL).

Lipemia (Intralipid):¹⁵ No significant interference up to an L index of 600. There is poor correlation between the L index (corresponds to turbidity) and triglycerides concentration.

High dose hook-effect: No false result occurs up to an IgM concentration of 30 g/L (31 µmol/L, 3000 mg/dL).

There is no cross-reaction between IgM and IgA or IgG under the assay conditions.

Drugs: No interference was found at the rapeutic concentrations using common drug panels. 16,17

As with other turbidimetric or nephelometric procedures, this test may not provide accurate results in patients with monoclonal gammopathy, due to individual sample characteristics which can be assessed by electrophoresis.¹⁸

For diagnostic purposes, the results should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.

ACTION REQUIRED

Special Wash Programming: The use of special wash steps is mandatory when certain test combinations are run together on Roche/Hitachi cobas c systems. The latest version of the carry-over evasion list can be found with the NaOHD-SMS-SmpCln1+2-SCCS Method Sheets. For further

instructions refer to the operator's manual. **cobas c** 502 analyzer: All special wash programming necessary for avoiding carry-over is available via the **cobas** link, manual input is required in certain cases.

Where required, special wash/carry-over evasion programming must be implemented prior to reporting results with this test.

Limits and ranges

Measuring range

Standard application (IGM-2):

0.25-6.50 g/L (0.26-6.70 µmol/L, 25.0-650 mg/dL)

Determine samples having higher concentrations via the rerun function. Dilution of samples via the rerun function is a 1:9 dilution. Results from samples diluted using the rerun function are automatically multiplied by a factor of 9.

Determine samples having lower concentrations via the rerun function. For samples with lower concentrations, the rerun function increases the sample volume by a factor of 5. The results are automatically divided by this factor.

Sensitive application (IGMP2):

0.04-1.50 g/L (0.04-1.55 µmol/L, 4.00-155 mg/dL)

Determine samples having higher concentrations via the rerun function. Dilution of samples via the rerun function is a 1:3 dilution. Results from samples diluted using the rerun function are automatically multiplied by a factor of 3.

Determine samples having lower concentrations via the rerun function. For samples with lower concentrations, the rerun function increases the sample volume by a factor of 4. The results are automatically divided by this factor.

Lower limits of measurement

Lower detection limit of the test

Standard application (IGM-2):

0.05 g/L (0.05 µmol/L, 5.00 mg/dL)

The lower detection limit represents the lowest measurable analyte level that can be distinguished from zero. It is calculated as the value lying 3 standard deviations above that of the lowest standard (standard 1 + 3 SD, repeatability, n = 21).

Sensitive application (IGMP2):

0.01 g/L (0.01 µmol/L, 1.00 mg/dL)

The lower detection limit represents the lowest measurable analyte level that can be distinguished from zero. It is calculated as the value lying 3 standard deviations above that of the lowest standard (standard 1 + 3 SD, repeatability, n = 21).

Expected values

Reference values according to CRM 470 Protein Standardization:^{19,20}

Adults	0.4-2.3 g/L	0.4-2.4 µmol/L	40-230 mg/dL
Children and juve	niles		
0-1 year	0.00-1.45 g/L	0.00-1.49 µmol/L	0-145 mg/dL
1-3 years	0.19-1.46 g/L	0.19-1.50 µmol/L	19-146 mg/dL
4-6 years	0.24-2.10 g/L	0.25-2.16 µmol/L	24-210 mg/dL
7-9 years	0.31-2.08 g/L	0.32-2.14 µmol/L	31-208 mg/dL
10-11 years	0.31-1.79 g/L	0.32-1.84 µmol/L	31-179 mg/dL
12-13 years	0.35-2.39 g/L	0.36-2.46 µmol/L	35-239 mg/dL
14-15 years	0.15-1.88 g/L	0.15-1.94 µmol/L	15-188 mg/dL
16-19 years	0.23-2.59 g/L	0.24-2.67 µmol/L	23-259 mg/dL

Roche has not evaluated reference ranges in a pediatric population. Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference ranges.

Specific performance data

Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

cobas®

Precision

Precision was determined using human samples and controls in an internal protocol with repeatability (n = 21) and intermediate precision (3 aliquots per run, 1 run per day, 21 days). The following results were obtained:

Standard application (IGM-2):

Repeatability	Mean	SD	CV
	g/L (µmol/L, mg/dL)	g/L (µmol/L, mg/dL)	%
Precinorm Protein	0.75 (0.773, 75.0)	0.01 (0.010, 1.00)	1.6
Precipath Protein	1.36 (1.40, 136)	0.02 (0.02, 2)	1.3
Human serum 1	0.71 (0.731, 71.0)	0.01 (0.010, 1.00)	1.6
Human serum 2	0.97 (0.999, 97.0)	0.01 (0.010, 1.00)	0.9
Intermediate	Mean	SD	CV
precision	g/L (µmol/L, mg/dL)	g/L (µmol/L, mg/dL)	%
Precinorm Protein	0.745 (0.767, 74.5)	0.03 (0.031, 3.00)	3.8
Precipath Protein	1.34 (1.38, 134)	0.03 (0.03, 3)	2.0
Human serum 3	0.822 (0.847, 82.2)	0.02 (0.021, 2.00)	2.8
Human serum 4	1.31 (1.35, 131)	0.03 (0.03, 3)	1.9
Sensitive application ((IGMP2):		
Repeatability	Mean	SD	CV
	g/L (µmol/L, mg/dL)	g/L (µmol/L, mg/dL)	%
Precinorm Protein	0.75 (0.773, 75.0)	0.007 (0.007, 0.700)	0.9
Precipath PUC	0.20 (0.206, 20.0)	0.002 (0.002, 0.2)	0.9
Human serum 1	0.23 (0.237, 23.0)	0.005 (0.005, 0.5)	2.3
Human serum 2	0.75 (0.773, 75.0)	0.006 (0.006, 0.6)	0.8
Intermediate	Mean	SD	CV
precision	g/L (µmol/L, mg/dL)	g/L (µmol/L, mg/dL)	%
Precinorm Protein	0.74 (0.762, 74.0)	0.011 (0.011, 1.10)	1.5
Precipath PUC	0.20 (0.206, 20.0)	0.003 (0.003, 0.3)	1.8
Human serum 3	0.25 (0.258, 25.0)	0.004 (0.004, 0.4)	1.7
Human serum 4	0.86 (0.886, 86.0)	0.009 (0.009, 0.9)	1.1

Method comparison

IgM values for human serum and plasma samples obtained on a Roche/Hitachi **cobas c** 501 analyzer (y) were compared with those determined using the corresponding reagent on a Roche/Hitachi 917 analyzer (x).

Standard application (IGM-2):

Sample size (n) = 82 $Passing/Pablek^{21}$

Passing/Bablok ²¹	Linear regression
y = 1.003x + 0.007 g/L	y = 1.002x + 0.009 g/L
т = 0.975	r = 0.999

The sample concentrations were between 0.275 and 4.94 g/L (0.283 and 5.09 μ mol/L, 27.5 and 494 mg/dL).

Sensitive application (IGMP2):

Sample size (n) = 273

Passing/Bablok²¹

т = 0.965	r = 0.998	
1 = 0.905	1 = 0.990	

The sample concentrations were between 0.049 and 1.44 g/L (0.050 and 1.48 $\mu mol/L,$ 5 and 144 mg/dL).

Linear regression

References

- 1 Deutsch E, Geyer G, Wenger R. Laboratoriumsmedizin: Normalbereich der Ergebnisse und Interpretation abnormer Befunde, 3rd ed. Basel/Munich: Karger 1992.
- 2 Kaplan LA, Pesce AJ, eds. Clinical Chemistry, Theory, Analysis and Correlation, 3rd edition. Mosby Inc 1996.
- 3 Ritzmann SE, Daniels JC. Serum Protein Abnormalities Diagnostic and Clinical Aspects. Boston, Mass: Little, Brown & Co 1975.
- 4 Henry JB, ed. Clinical Diagnosis and Management by Laboratory Methods. Vol II. Philadelphia, Pa: WB Saunders 1979.
- 5 Tietz NW, ed. Clinical Guide to Laboratory Tests, 3rd ed. Philadelphia, PA: WB Saunders Company 1995;354-357.
- 6 Wallach J. Interpretation of Diagnostic Tests, 3rd ed. Boston, Mass: Little, Brown & Co 1978.
- 7 Gitlin D, Edelhoch H. A study of the reaction between human serum albumin and its homologous equine antibody through the medium of light scattering. J Immunol 1951;66:76-78.
- 8 Ritchie RF. A simple, direct, and sensitive technique for measurement of specific protein in dilute solution. J Lab Clin Med 1967;70:512-517.
- 9 Killingsworth LM, Savory J. Manual Nephelometric Methods for Immunochemical Determination of Immunoglobulins IgG, IgA, and IgM in Human Serum. J Clin Chem 1972;18(4):335-339.
- 10 Lizana J, Hellsing K. Manual immunonephelometric assay of proteins, with use of polymer enhancement. Clin Chem 1974;20:1181-1186.
- 11 Tietz NW. Clinical Guide to Laboratory Tests. 2nd ed. Philadelphia, Pa: WB Saunders Co 1976;278-280.
- 12 Heidelberger M, Kendall FE. A quantitative theory of the precipitin reaction. J Exp Med 1935;62:697-720.
- 13 Use of Anticoagulants in Diagnostic Laboratory Investigations. WHO Publication WHO/DIL/LAB/99.1 Rev. 2: Jan 2002.
- 14 Baudner S, Bienvenu J, Blirup-Jensen S, et al. The certification of a matrix reference material for immunochemical measurement of 14 human serum proteins CRM470. Report EUR 15243 EN 1993;1-186.
- 15 Glick MR, Ryder KW, Jackson SA. Graphical Comparisons of Interferences in Clinical Chemistry Instrumentation. Clin Chem 1986;32:470-475.
- 16 Breuer J. Report on the Symposium "Drug effects in Clinical Chemistry Methods". Eur J Clin Chem Clin Biochem 1996;34:385-386.
- 17 Sonntag O, Scholer A. Drug interference in clinical chemistry: recommendation of drugs and their concentrations to be used in drug interference studies. Ann Clin Biochem 2001;38:376-385.
- 18 Attaelmannan M, Levinson SS. Understanding and identifying monoclonal gammopathies. Clin Chem 2000;46(8 Pt 2):1230-1238.
- 19 Dati F, Schumann G, Thomas L, et al. Consensus of a group of professional societies and diagnostic companies on guidelines for interim reference ranges for 14 proteins in serum based on the standardization against the IFCC/BCR/CAP reference material (CRM 470). Eur J Clin Chem Clin Biochem 1996;34:517-520.
- 20 Lockitch G, Halstead AC, Quigley G, et al. Age- and sex-specific pediatric reference intervals; study design and methods illustrated by measurement of serum proteins with the Behring LN Nephelometer. Clin Chem 1988;34:1618-1621.
- 21 Bablok W, Passing H, Bender R, et al. A general regression procedure for method transformation. Application of linear regression procedures for method comparison studies in clinical chemistry, Part III. J Clin Chem Clin Biochem 1988 Nov;26(11):783-790.

A point (period/stop) is always used in this Method Sheet as the decimal separator to mark the border between the integral and the fractional parts of a decimal numeral. Separators for thousands are not used.

Symbols

Roche Diagnostics uses the following symbols and signs in addition to those listed in the ISO 15223-1 standard (for USA: see https://usdiagnostics.roche.com for definition of symbols used):

CONTENT

Contents of kit

2018-11, V 13.0 English

Volume after reconstitution or mixing

coha q

Global Trade Item Number

FOR US CUSTOMERS ONLY: LIMITED WARRANTY

Roche Diagnostics warrants that this product will meet the specifications stated in the labeling when used in accordance with such labeling and will be free from defects in material and workmanship until the expiration date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.

COBAS, COBAS C, PRECICONTROL, PRECINORM, PRECIPATH and TINA-QUANT are trademarks of Roche. All other product names and trademarks are the property of their respective owners. Additions, deletions or changes are indicated by a change bar in the margin.

© 2018, Roche Diagnostics

Roche Diagnostics GmbH, Sandhofer Strasse 116, D-68305 Mannheim www.roche.com

Distribution in USA by: Roche Diagnostics, Indianapolis, IN US Customer Technical Support 1-800-428-2336